Have a personal or library account? Click to login
Enhancement the conditioning of waste activated sludge through a sequence of freeze/thaw-electro-Fenton process Cover

Enhancement the conditioning of waste activated sludge through a sequence of freeze/thaw-electro-Fenton process

Open Access
|Apr 2018

References

  1. 1. Xinghong Zhang, H.L., Kai, Chen, Zhang, Liu, Han, Wu & Haiyi, Liang. (2012). Effect of potassium ferrate(K2FeO4) on sludge dewaterability under different pH conditions. Chem. Eng. J. 210, 467–474. DOI: 10.1016/j.cej.2012.09.013.10.1016/j.cej.2012.09.013
  2. 2. A. T. Pham, M.S. & Virkutyte, J. (2010). Sludge dewatering by sand-drying bed coupled with electro-dewatering at various potentials. Int. J. Min. Reclam. Environ. 24, 151–162. DOI: 10.1080/17480930903132620.10.1080/17480930903132620
  3. 3. Elisabeth Neyens, J.B., Raf, Dewil & Bart, De Heyder. (2004). Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J. Hazard. Mater. 106, 83–92. DOI: 10.1016/j.jhazmat.2003.11.014.10.1016/j.jhazmat.2003.11.014
  4. 4. L. H. Mikkelsen, K.K. (2002). Physico-chemical characteristics of full scale sewage sludge with implications to dewatering. Water Res. 36, 2451–2462. DOI: 10.1016/S0043-1354(01)00477-8.10.1016/S0043-1354(01)00477-8
  5. 5. G. P. Sheng, H.Q.Y. & Li, X.Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnology Adv. 28, 882–894. DOI: 10.1016/j.biotechadv.2010.08.001.10.1016/j.biotechadv.2010.08.001
  6. 6. W. W. Li, H.Q.Y. (2014). Insight into the roles of microbial extracellular polymer substances in metal bio sorption. Bio Res. Technol. 160, 15–23. DOI: 10.1016/j.biortech.2013.11.074.10.1016/j.biortech.2013.11.074
  7. 7. J. H. Bruus, P.H.N. & Keiding, K. (1992). on the stability of activated – sludge flocks with implications to dewatering. Water Res. 26, 1597–1604. DOI: 10.1016/0043-1354(92)90159-2.10.1016/0043-1354(92)90159-2
  8. 8. X. M. Liu, G.P.S., H.W. Luo, F. Zhang, S.J. Yuan, J. Xu, R.J. Zeng, J.G., Wu. & H.Q. Yu. (2010). Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environ. Sci. Technol. 44, 4355–4360. DOI: 10.1021/es9016766.10.1021/es901676620446688
  9. 9. Dong-Qin, He, L.F.W., Hong Jiang & Han-Qing Yu. (2015). A Fenton-like process for the enhanced activated sludge dewatering. Chem. Eng. J. 272, 128–134. DOI: 10.1016/j.cej.2015.03.034.10.1016/j.cej.2015.03.034
  10. 10. Huan Liu, J.Y., Yafei Shi, Ye Li, Shu He, Changzhu Yang. & Hong Yao. (2012). Conditioning of sewage sludge by Fenton’s reagent combined with skeleton builders. Chemosphere. 88, 235–239. DOI: 10.1016/j.chemosphere.2012.02.084.10.1016/j.chemosphere.2012.02.08422459420
  11. 11. Izrail, S. & Turovskiy P.K.M. (2006). Wastewater sludge processing, John Wiley & Sons, Inc., Hoboken, New Jersey.10.1002/047179161X
  12. 12. Kakii, K., Kitamura, S., Shirakashi, T. & Kuriyama, M. (1985). Effect of calcium ion on sludge characteristics. Ferment Technol. 63, 263.
  13. 13. Eriksson L.a.A., B. (1991). Characterization of activated sludge and conditioning with cationic polyelectrolytes. Wat.Sci. Tech. 28, 203. DOI: 10.1016/j.desal.2007.07.016.10.1016/j.desal.2007.07.016
  14. 14. Ormeci, B. (2004). Freeze-Thaw Conditioning of Activated Sludge: effect of Monovalent, Divalent, and Trivalent Cations. J Resid. Sci. Tech. 3, 143–150. DOI: 1544-8053/04/03.
  15. 15. B. Ormeci, P.A.V. (2001). Effect of dissolved organic material and cations on freeze–thaw conditioning of activated and alum sludges. Water Res. 35, 4299–4306. DOI: 10.1016/S0043-1354(01)00174-9.10.1016/S0043-1354(01)00174-9
  16. 16. M S, P.A.T. (2010). Effect of freeze/thaw conditions, polyelectrolyte addition, and sludge loading on sludge electrodewatering process. Chem. Eng. J. 164, 85–91. DOI: 10.1016/j.cej.2010.08.02810.1016/j.cej.2010.08.028
  17. 17. Esmaeli, R., Hassani, A., Eslami, A., Moghadam, M.A. & Safari A. (2011). Di-(2-Ethylhexyl) Phthalate oxidative degradation by Fenton process in synthetic and real petrochemical wastewater. Iranian. J. Environ. Health Sci. Eng. 8(3), 201. DOI: 10.1007/s11270-008-9903-9.10.1007/s11270-008-9903-9
  18. 18. Jaafarzadeh, N., Amiri, H. & Ahmadi, M. (2012). Factorial experimental design application in odification of volcanic ash as a natural adsorbent with Fenton process for arsenic removal. Environ Technol. 33(2), 159–165. DOI: 10.1080/09593330.2011.554887.10.1080/09593330.2011.55488722519099
  19. 19. Ahmadi, M., Amiri, H. & Martínez, S.S. (2012). Treatment of phenol-formaldehyde resin manufacturing wastewater by the electrocoagulation process. Desalin Water Treat 39(1–3), 176–181. DOI: 10.1080/19443994.2012.669172.10.1080/19443994.2012.669172
  20. 20. Jaafarzadeh, N., Ghanbari, F., Ahmadi, M. & Omidinasab, M. (2017). Efficient integrated processes for pulp and paper wastewater treatment and phytotoxicity reduction: permanganate, electro-fenton and Co3O4/UV/peroxymonosulfate. Chem. Eng. J. 308, 142–150. DOI: 10.1016/j.cej.2016.09.015.10.1016/j.cej.2016.09.015
  21. 21. APHA. (2005). Standard Methods for the Examination of Water & Wastewater (21 th ed). Am. Public Health Assoiation, Washington DC.
  22. 22. Shihab, M.S. (2010). Assessment of using chemical coagulants and effective microorganisms in sludge dewaterability process improvement. Environ. Sci. Technol. 3, 35–46. DOI: 10.3923/jest.2010.35.46.10.3923/jest.2010.35.46
  23. 23. J. Kruger, N. (1994). The Bradford method for protein quantitation. Basic protein and peptide protocols. 9–15. DOI: 10.1385/0-89603-268-X:9.10.1385/0-89603-268-X:9
  24. 24. Tatsuya Masukoa, A.M., Norimasa Iwasaki, Tokifumi Majima, Shin-Ichiro Nishimura & Yuan C. Lee. (2005). Carbohydrate analysis by a phenol–sulfuric acid method in micro plate format. Anal. Biochem. 339, 69–72. DOI: 10.1016/j.ab.2004.12.001.10.1016/j.ab.2004.12.00115766712
  25. 25. P.A. Vesilind, S.W. & Martel, C.J. (1991). Freeze–thaw sludge conditioning and double layer compression. Can. J. Civ. Eng. 18, 1078–1083. DOI: 1139/l91-130.10.1139/l91-130
  26. 26. T. D. Pham, R.A.S., Virkutyte, J. & Sillanpa, M. (2009). Combined ultra-sonication and electro kinetic remediation for persistent organic removal from contaminated kaolin. Electrochim. Acta. 54, 1403–1407. DOI: 10.1016/j.electacta.2008.09.015.10.1016/j.electacta.2008.09.015
  27. 27. D.J. Lee, Y.H.H. (1994). Fast freeze/thaw treatment on activated sludge: floc structure and sludge dewaterability. Environ. Sci. Technol. 28, 1444–1449. DOI: 10.1021/es00057a011.10.1021/es00057a011
  28. 28. W.T. Hung, I.L.C., W.W. Lin. & D.J. Lee. (1996). Unidirectional freezing of waste activated sludge: effects of freezing speed. Environ. Sci. Technol. 30, 2391–2396. DOI: 10.1021/es950889x.10.1021/es950889x
  29. 29. P.A. Vesilind, C.J.M. (1990). Freezing of water and wastewater sludges. Environ. Eng. Manag. 116, 854–862. DOI: 10.1061/(ASCE)0733-9372(1990)116:5(854).10.1061/(ASCE)0733-9372(1990)116:5(854)
  30. 30. Pham-Anh, Tuana, M.S. (2010). Effect of freeze/thaw conditions, polyelectrolyte addition, and sludge loading on sludge electro-dewatering process. Chem. Eng. J. 164, 85–91. DOI: 10.1016/j.cej.2010.08.028.10.1016/j.cej.2010.08.028
  31. 31. Xun-an Ning, HC J.W., Yujie Wang, Jingyong Liu & Meiqing Lin. (2014). Effects of ultrasound assisted Fenton treatment on textile dyeing sludge structure and dewaterability. Chem. Eng. J. 242, 102–108. DOI: 10.1016/j.cej.2013.12.06410.1016/j.cej.2013.12.064
  32. 32. Chih-Ta Wang, W.L.C. M.H.C. & Yi-Ming Kuo. (2010). COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode. Desalination. 253, 129–134. DOI: 10.1016/j.desal.2009.11.020.10.1016/j.desal.2009.11.020
  33. 33. Neyens, E. B.J. W.M. & De heyder, B. (2003). Pilot-scale peroxidation (H2O2) of sewage sludge. J. Hazard. Mater. 98, 91–106. DOI: 10.1016/S0304-3894(02)00287-X.10.1016/S0304-3894(02)00287-X
  34. 34. Rusong, Mo S.H. W.D., Jialin Liang & Shuiyu Sun. (2015). A rapid Fenton treatment technique for sewage sludge dewatering. Chem. Eng. J. 269, 391–398. DOI: 10.1016/j.cej.2015.02.001.10.1016/j.cej.2015.02.001
  35. 35. Tatsuya Masukoa, AM N.I., Tokifumi Majima & Shin-Ichiro Nishimura, Y.L. (2005). Carbohydrate analysis by a phenol–sulfuric acid method in micro plate format. Anal. Biochem. 339, 69–72. DOI: 10.1016/j.ab.2004.12.001.10.1016/j.ab.2004.12.00115766712
  36. 36. Hai-ping Yuan XfY C.f.Y. & Nan-wen Zhu. (2011). Enhancement of waste activated sludge dewaterability by electro-chemical pretreatment. J. Hazard. Mater. 187, 82–88. DOI: 10.1016/j.jhazmat.2010.12.106.10.1016/j.jhazmat.2010.12.10621288635
  37. 37. Hai-ping Yuan XbC S.p.C., Nan-wen Zhu & Zhen-ying Zhou. (2011). New sludge pretreatment method to improve dewaterability of waste activated sludge. Bioresour. Technol. 102, 5659–5664. DOI: 10.1021/es1000209.10.1021/es100020920496937
  38. 38. Pham, A.T. (2010). sewage sludge electro dewatering. Int. J. Min. Reclam. Environ. 24, 151–162. DOI: 10.1080/07373937.2012.654874.10.1080/07373937.2012.654874
  39. 39. Eslami, A., Moradi, M., Ghanbari, F. & Raei Shaktaee, H. (2013). Study on Performance of Electro-Fenton for Color Removal from Real Textile Wastewater Based on ADMI. Color Sci. Technol. 7, 173–180.
  40. 40. Gharibi, H., Sowlat, M.H., Mahvi, A.H., Keshavarz, M., Safari, M.H., Bahram Abadi, M. & Alijanzadeh, A. (2012). Performance evaluation of a bipolar electrolysis/electrocoagulation (EL/EC) reactor to enhance the sludge dewaterability. Chemosphere. 69, 1–8. DOI: 10.1016/j.chemosphere.2012.09.069.10.1016/j.chemosphere.2012.09.06923116826
  41. 41. P -ATSMI P. (2012). Sewage Sludge Electro-Dewatering Treatment-A review. Drying Technol. 30, 691–706. DOI: 10.1080/07373937.2012.654874.10.1080/07373937.2012.654874
  42. 42. Haiping, Yuan NZ L.S. (2010). Conditioning of sewage sludge with electrolysis: Effectiveness and optimizing study to improve dewaterability. Bioresour. Technol. 101, 4285–4290. DOI: 10.1016/j.biortech.2009.12.147.10.1016/j.biortech.2009.12.14720153168
Language: English
Page range: 47 - 53
Published on: Apr 16, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Narjes Shahheidar, Sahand Jorfi, Afshin Takdastan, Neemat Jaafarzadeh, Mehdi Ahmadi, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.