Have a personal or library account? Click to login
Energy efficiency analysis of styrene production by adiabatic ethylbenzene dehydrogenation using exergy analysis and heat integration Cover

Energy efficiency analysis of styrene production by adiabatic ethylbenzene dehydrogenation using exergy analysis and heat integration

By: Emad Ali and  Mohamed Hadj-Kali  
Open Access
|Apr 2018

References

  1. 1. Akpa, J.G. (2012). Simulation of an Isothermal Catalytic Membrane Reactor for the Dehydrogenation of Ethylbenzene, Chem. Proc. Enginee. Res. 3, 14–28, ISSN 2225–0913.
  2. 2. Arno Behr. (2017). Styrene production from ethyl benzene, Retrieved July 13, 2017 from (http://www.tc.bci.tu-dortmund.de/Downloads/Praktika/tc30_styrene_english.pdf.
  3. 3. Hermann, Ch., Quicker, E. & Dittmeyer, R. (1997). Mathematical simulation of catalytic dehydrogenation of ethylbenzene. J. Memb. Sci. 136, 161–172. DOI: 10.1016/S0376-7388(97)81990-4.10.1016/S0376-7388(97)81990-4
  4. 4. PRWeb, World Styrene Market Dynamics Reviewed. Retrieved July, 13, 2017, from http://www.prweb.com/releases/2012/9/prweb9930130.htm.
  5. 5. PRLog, Styrene Global Markets to 2020. Retrieved July, 13, 2017, from http://www.prlog.org/11727607-styrene-globalmarkets-to-2020-substitution-of-polystyrene-by-polypropylene.
  6. 6. Snyder, J.D. & Subramaniam, B. (1994). Novel Reverse Flow Strategy for Ethylbenzene Dehydrogenation in A Packed bed Reactor. Chem. Enginee. Sci. 49(24), 5565–5601. DOI: 10.1016/0009-2509(94)00287-8.10.1016/0009-2509(94)00287-8
  7. 7. Haynes, T.N., Georgakis, C. & Caram, H.S. (1992). The Application of Reverse Flow Reactors to Endothermic Reactions. Chem. Enginee. Sci. 47(9–11), 2927–2932. DOI: 10.1016/0009-2509(92)87153-H.10.1016/0009-2509(92)87153-
  8. 8. Abdalla, B.K., Elnashaie, S.S.E.H., Alkhowaiter, S. & Elshishini, S.S. (1994). Intrinsic kinetics and industrial reactors modelling for the dehydrogenation of ethylbenzene to styrene on promoted iron oxide catalysts. Appl. Catal. A: General 113, 89–102. DOI: 10.1016/0926-860X(94)80243-2.10.1016/0926-860X(94)80243-2
  9. 9. Hossain, M.M., Atanda, L., Al-Yassir, N., Al-Khattaf, S. (2012). Kinetics modeling of ethylbenzene dehydrogenation to styrene over a mesoporous alumina supported iron catalyst. Chem. Enginee. J. 207–208, 308–321. DOI: 10.1016/j.cej.2012.06.108.10.1016/j.cej.2012.06.108
  10. 10. Tamsilian, Y., Ebrahimi, A.N., Ramazani, S.A. & Abdollahzadeh, H. (2012). Modeling and sensitivity analysis of styrene monomer production process and investigation of catalyst behavior. Comp. Chem. Enginee. 40, 1–11. DOI: 10.1016/j.compchemeng.2012.01.014.10.1016/j.compchemeng.2012.01.014
  11. 11. Zarubina, V. (2015). Oxidative dehydrogenation of ethylbenzene under industrially relevant conditions: on the role of catalyst structure and texture on selectivity and stability. PhD Thesis, University of Groningen, Netherland.
  12. 12. Lee, W.J. (2005). Ethylbenzene Dehydrogenation into Styrene: Kinetic Modeling and Reactor Simulation. PhD Thesis, Texas A&M.
  13. 13. Nederlof, C. (2012). Catalytic dehydrogenations of ethylbenzene to styrene. PhD thesis, University of Delft, Netherland.
  14. 14. Park, S.E. & Chang, J.S. (2004). Novel Process for Styrene from Ethylbenzene with Carbon Dioxide. 227th National Meeting of the American-Chemical Society, MAR 28-APR 01, 2004 (pp U1076-U1076), Anaheim, CA, USA. ISSN: 0065-7727.
  15. 15. Mimura, N. & Saito, M. (2000a). Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide. Catal. Today 55, 173–178. DOI: 10.1016/S0920-5861(99)00236-9.10.1016/S0920-5861(99)00236-9
  16. 16. Mimura, N. & Saito, M. (200b). Dehydrogenation of ethylbenzene to styrene in the presence of CO2. Appl. Organometal. Chem. 14, 773–777. DOI: 10.1002/1099-0739(200012)1410.1002/1099-0739(200012)14
  17. 17. Cavani, F. & Trifiro, F. (1995). Alternative Processes for the Production of Styrene. Appl. Catal. A, 133, 219–239.DOI: 10.1016/0926-860X(95)00218-9.10.1016/0926-860X(95)00218-9
  18. 18. Mimura, N., Takahara, I., Saito, M., Hattori, T., Ohkuma, K. & Ando, M. (1998). Dehydrogenation of ethylbenzene over iron oxide-based catalyst in the presence of carbon dioxide. Catal. Today 45, 60–64. DOI: 10.1016/S0920-5861(98)00246-6.10.1016/S0920-5861(98)00246-6
  19. 19. Abdalla, B.K., Elnashaie, S.S. E.H. (1994). Catalytic Dehydrogenation of Ethylbenzene to Styrene in Membrane Reactors. AIChE 40(12), 2055–2059. DOI: 10.1002/aic.690401215.10.1002/aic.690401215
  20. 20. Vaezi, M.J., Babaluo, A.A. & Shafiei, S. (2015). Modeling of Ethylbenzene Dehydrogenation Membrane Reactor to Investigate the Potential Application of a Microporous Hydroxy Sodalite Membrane. J. Chem. Petrol. Enginee. 49(1), 51–62. ISSN: 2423–6721.
  21. 21. Gundersen, T. (2017). Chapter 2.1 in Handbook of Process Integration Heat Integration -Targets and Heat Exchanger Network Design, Retrieved July, 7, 2017. http://www.ivt.ntnu.no/ept/fag/tep4215/innhold/Handbook%20of%20PI%20-%20Chapter%202-1.pdf.
  22. 22. Yoon, S.G. Lee, J. & Park, S. (2007). Heat integration analysis for an industrial ethylbenzene plant using pinch analysis. Appl. Ther. Enginee. 27, 886–893. DOI: 10.1016/j.applthermaleng.2006.09.001.10.1016/j.applthermaleng.2006.09.001
  23. 23. Carra. S. & Fomi. L. (1965). Kinetics of Catalytic Dehydrogenation of Ethylbenzene to Styrene. Engng. Chem. Proc. Des. Dev. 4, 281–285. DOI: 10.1021/i260015a009.10.1021/i260015a009
  24. 24. Modell, D.J. (1972). Optimization theory and applications: optimum temperature simulation of the styrene monomer reaction. Chem. Enginee. Comput. Vol. 1. AIChE, New York.
  25. 25. Lee, W.J. & Froment, G.F. (2008). Ethylbenzene Dehydrogenation into Styrene: Kinetic Modeling and Reactor Simulation. Ind. Eng. Chem. Res. 47, 9183–9194. DOI: 10.1021/ie071098u.10.1021/ie071098u
  26. 26. James, D.H. & Castor, W.M. (1994). Ullmann’s encyclopedia of industrial chemistry. Wiley. Vol. 25, 5th ed., p. 329.
  27. 27. Styrene Production, Retrieved July, 13, 2017. http://cbe.statler.wvu.edu/files/d/cd80e618-6d29-41a9-a854-275a995ed6cf/styrene12.pdf.
  28. 28. Hanyak, M.E. (2011). Companion in Chemical Engineering: An Instructional Supplement, CreateSpace Independent Publishing Platform, USA.
  29. 29. Smith, J.M., Van Ness, H.C. & Abbott, M.M. (2005). Introduction to Chemical Engineering Thermodynamics, 6th edition, McGraw Hills, USA.
  30. 30. Wall, G. (2011). Life Cycle Exergy Analysis of Renewable Energy System. Renew. Energy J. 4, 72–77. DOI: 10.2174/1876387101004010072.10.2174/1876387101004010072
  31. 31. Martinaitis, V., Streckiene, G., Biekša, D. & Bielskus, J. (2016). The exergy efficiency assessment of heat recovery exchanger for air handling units, using a state property – Coenthalpy. Appl. Therm. Enginee. 108, 388–397. DOI: 10.1016/j.applthermaleng.2016.07.118.10.1016/j.applthermaleng.2016.07.118
  32. 32. Shenoy, U.V. (1995). Heat Exchange Network Synthesis: Process Optimization by Energy and Resource Analysis. Gulf Publ. Co., Houston, TX.
  33. 33. Linnhoff, B. (1993). Pinch analysis- A state of the art overview. Trans. Inst. Chem. Eng. Chem. Eng. Res. Des. 71, Part A5, 503–522. ISSN: 0263-8762.
  34. 34. Gundersen, T. & Naess, L. (1988). The synthesis of cost optimal heat exchanger networks: An industrial review of the state of the art. Comput. Chem. Enginee. 12(6), 503–530. DOI: 10.1016/0890-4332(90)90084-W.10.1016/0890-4332(90)90084-
  35. 35. Douglas, J.M. (1988). Conceptual Design of Chemical Processes, McGraw Hill, New York.
  36. 36. El-Halwagi, M.M. (2012). Sustainable Design Through Process Integration, 1st Ed., Butterworth-Heinemann, USA.10.1016/B978-1-85617-744-3.00001-1
  37. 37. Klemes, J. (2013). Handbook of Process Integration (PI), Woodhead Publishing, USA.10.1533/9780857097255
Language: English
Page range: 35 - 46
Published on: Apr 16, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Emad Ali, Mohamed Hadj-Kali, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.