4. Yin, S.F., et al. (2004). A mini-review on ammonia decomposition catalysts for on site generation of hydrogen for fuel cell applications. Appl. Catal. A. 277, 1-9. DOI: 10.1016/j. apcata.2004.09.020.
5. Schuth, F., Palkovits, R., Schlogl, R. & Su, D.S. (2012). Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy Environ. Sci. 5, 6278-6289. DOI: 10.1039/c2ee02865d.10.1039/C2EE02865D
6. Lendzion-Bielun, Z., Pelka, R. & Arabczyk, W. (2009). Study of the Kinetics of Ammonia Synthesis and Decomposition on Iron and Cobalt Catalysts. Catal. Lett. 129, 119-121. DOI: 10.1007/s10562-008-9785-x.10.1007/s10562-008-9785-x
9. Ganley, J.C., Thomas, F.S., Seebauer, E.G. & Masel, R.I. (2004). A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia. Catal. Lett. 96, 117-122. DOI: 1011-372X/04/0700-0117/0.10.1023/B:CATL.0000030108.50691.d4
11. Duan, X., Ji, J., Qian, G., Fan, Ch., Zhu, Y., Zhou, X., Chen, D., Yuan, W. (2012). Ammonia decomposition on Fe(11), Co(111) and Ni(111) surfaces: A density functional theory study. J. Mol. Catal. A: Chem. 357, 81-86. DOI: 10.1016/j. molcata.2012.01.023.
13. Lendzion-Bieluń, Z. & Arabczyk, W. (2013). Fused FeCo catalysts for hydrogen production by means of the ammonia decomposition reaction. Catal. Today. 212, 215-219. DOI: 10.1016/j.cattod.2012.12.014.10.1016/j.cattod.2012.12.014
15. Ji, J., Duan, X., Qian, G., Zhou, X., Tong, G. & Yuan, W. (2014). Towards an effiecient CoMo/γ−Al2O3 catalyst using metal amine metallate as an active phase precursor: Enhanced hydrogen production by ammonia decomposition. Int. J. Hydrogen Energy. 39, 12490-12498. DOI: 10.1016/j. ijhydene.2014.06.081.
17. Zhang, J., Muller, J.-O., Zheng, W., Wang, D., Su, D. & Schlögl, R. (2008). Individual Fe-Co alloy nanoparticles on carbon nanotubes: structural and catalytic properties. Nano Lett. 8(9), 2738-2743. DOI: 10.1021/nl8011984.10.1021/nl8011984
18. Hill, A.K. & Torrente-Murciano, L. (2014). In-situ H2 production via low temperature decomposition of ammonia: Insights into the role of cesium as a promoter. Inter. J. Hydro. Ene. 39, 7646-7654. DOI: 10.1016/j.ijhydene.2014.03.043.10.1016/j.ijhydene.2014.03.043
19. Raróg-Pilecka, W., Szmigiel, D., Kowalczyk, Z., Jodzis, S. & Zielinski, J. (2003). Ammonia decomposition over the carbon- based ruthenium catalyst promoted with barium or cesium. J. Catal. 218, 465-469. DOI: 10.1016/S0021-9517(03)00058-7.10.1016/S0021-9517(03)00058-7
20. Pelka, R. & Arabczyk, W. (2013). A new method for determining the nanocrystallite size distribution in systems where chemical reaction between solid and a gas phase occurs. J. Nanomat. DOI: 10.1155/2013/645050.10.1155/2013/645050