1. Kopyscinski, J., Schildhauer, T.J. & Biollaz, S.M.A. (2010). Production of synthetic natural gas (SNG) from coal and dry biomass-A technology review form 1950 to 2009. Fuel. 89(8), 1763-1783. DOI: 10.1016/j.fuel.2010.01.027.10.1016/j.fuel.2010.01.027
2. Gao, J.J., Wang, Y.L., Ping, Y., Hu, D.C., Xu, G.W., Gu, F.N. & Su, F.B. (2012). A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv. 2(6), 2358-2368. DOI: 10.1039/c2ra00632d.10.1039/c2ra00632d
3. Xavier, K.O., Sreekala, R., Rashid, K.K.A., Yusuf, K.K.M. & Sen, B. (1999). Doping effects of cerium oxide on Ni/Al2O3 catalysts for methanation. Catal. Today. 49(1-3), 17-21. DOI: 10.1016/S0920-5861(98)00403-9.10.1016/S0920-5861(98)00403-9
7. Utaka, T., Takeguchi, T., Kikuchi, R. & Eguchi, K. (2003). CO removal from reformed fuels over Cu and precious methal catalysts. Appl. Catal. A: Gen. 246(1), 117-124. DOI: 10.1016/ S0926-860X(03)00048-6.10.1016/S0926-860X(03)00048-6
8. Vannice, M.A. (1975). The catalytic synthesis of hydrocarbons form H2/CO mixtures over the group VIII methas: 1. The specific activities and product distributions of supported metals. J. Catal. 37(3), 449-461. DOI: 10.1016/00214-9517(75)90181-5.
9. Kim, S.H., Lee, W.D. & Lee, H.I. (2013). Effect of CeO2 on CO removal over CeO2-modified Ni catalyst in CO-rich syngas. Korean J. Chem. Eng. 30(4), 860-863. DOI: 10.1007/ s11814-013-0007-x.10.1007/s11814-013-0007-x
10. Wieslawa, C.B. (2013). Infl uence of the exchanged metal ions (Cu, Co, Ni and Mn) on the selective catalytic reduction of NO with hydrocarbons over modified ferrierite. Pol. J. Chem. Tech. 15(2), 10-15. DOI: 10.2478/pjct-2013-001810.2478/pjct-2013-0018
11. Shi, P. & Liu, C.J. (2009). Characterization of silica supported nickel catalyst for methanation with improved activity by room temperature plasma treatment. Catal. Lett. 133(1-2), 112-118. DOI: 10.1007/s10562-009-0163-0.10.1007/s10562-009-0163-0
14. Guimon, C., Auroux, A., Romero, E. & Monzon, A. (2003). Acetylene hydrogenation over Ni-Si-Al mixed oxides prepared by sol-gel technique. Appl. Catal. A: Gen. 251(1), 199-214. DOI: 10.1016/S0926-860X(03)00318-1.10.1016/S0926-860X(03)00318-1
17. Vos, B., Poels, E. & Bliek, A. (2001). Impact of calcination conditions on the structure of alumina-supported nickel particles. J. Catal. 198(1), 77-88. DOI: 10.1006/jcat.2000.3082.10.1006/jcat.2000.3082
18. Zou, X.J., Wang, X.G. & Li, L. (2010). Development of highly effective supported nickel catalysts for pre-reforming of liquefied petroleum gas under low steam to carbon molar ratios. Int. J. Hydrogen. Energ. 35(22), 12191-12200. DOI: 10.1016/j.ijhydene.2010.08.080.10.1016/j.ijhydene.2010.08.080
19. Yang, J., Wang, X.G., Li, L., Shen, K., Lu, X.G. & Ding, W.Z. (2010). Catalytic conversion of tar from hot coke oven gas using 1-methylnaphthalene as a tar model compound. Appl. Catal. B: Environ. 96(1-2), 232-237. DOI: 10.1016/j. apcatb.2010.02.026.
20. Koo, K.Y., Roh, H.S., Seo, Y.T., Seo, D.J., Yoon, W.L. & Park, S.B. (2008). A highly effective and stable nano-sized Ni/MgO- Al2O3 catalyst for gas to liquids (GTL) process. Int. J. Hydrogen. Energ. 33(8), 2036-2043. DOI: 10.1016/j. ijhydene.2008.02.029.
22. Gao, J.J., Jia, C., Zhang, M.J., Gu, F., Xu, G.W. & Su, F.B . (2013). Effect of nickel nanoparticle size in Ni/α-Al2O3 on CO methanation reaction for the production of synthetic natural gas. Catal. Sci. Technol. 3(8), 2009-2015. DOI: 10.1039/ C3CY00139C.10.1039/c3cy00139c
23. Chen, D., Christensen, K.O., Ochoa-Fernandez, E., Yu, Z.X., Totdal, B., Latorre, N., Monzon, A. & Holmen, A. (2005). Synthesis of carbon nanofibers: effects of Ni crystal size during decomposition. J. Catal. 229(1), 82-96. DOI: 10.1016/j. jcat.2004.10.017.
24. Jimeneza, V., Sancheza, P., Panagiotopouloub, P., Valverdea, J.L. & Romeroa, A. (2010). Methanation of CO, CO2, and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts. Appl. Catal. A: Gen. 390(1-2), 35-44. DOI: 10.1016/j.apcata.2010.09.0 26.