Have a personal or library account? Click to login
Fabrication of Electrochemical Nanoelectrode for Sensor Application Using Focused Ion Beam Technology Cover

Fabrication of Electrochemical Nanoelectrode for Sensor Application Using Focused Ion Beam Technology

Open Access
|Oct 2014

References

  1. 1. Tseng, A.A. (2005). Recent Developments in Nanofabrication Using Focused Ion Beams. Nanofabrication 1 (10), 924-939. DOI: 10.1002/smll.200500113.10.1002/smll.20050011317193371
  2. 2. Balasubramanian, K. (2010). Challenges in the use of 1D nanostructures for on-chip biosensing and diagnostics: A review. Biosensors and Bioelectronics 26(4), 1195-1204. DOI:10.1016/j. bios.2010.07.041.
  3. 3. Walker, G.M., Ramsey, J.M., Cavin, R.K., Herr, D.J., Merzbacher, C.I. & Zhirnov, V. (2009, February). A Framework for Bioelectronics Discovery and Innovation. National Institute of Standards and Technology. Retrieved April 25, 2012, from http://www.nist.gov/pml/div683/upload/bioelectronics_report.pdf
  4. 4. Wang, J. (2006). Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosensors and Bioelectronics 21(10), 1887-1892. DOI:10.1016/j.bios.2005.10.027.10.1016/j.bios.2005.10.02716330202
  5. 5. Sadik, O.A., Mwilu, S.K. & Aluoch, A. (2010). Smart electrochemical biosensors: From advanced materials to ultrasensitive devices. Electrochimica Acta 55, 4287-4295. DOI:10.1016/j.electacta.2009.03.008.10.1016/j.electacta.2009.03.008
  6. 6. Murray, R.W. (2008). Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores. Chem. Rev. 108(7), 2688-2720. DOI: 10.1021/cr068077e.10.1021/cr068077e18558753
  7. 7. Fan, F.R.F. & Bard, A.J. (1995). Electrochemical Detection of Single Molecules, Science 267, 871-875. DOI: 10.1126/ science.267.5199.871.
  8. 8. Li, Y.X., Cox, J.T. & Zhang, B. (2010). Electrochemical Responses and Electrocatalysis at Single Au Nanoparticles. J. Am. Chem. Soc. 132(9), 3047-3054. DOI: 10.1021/ja909408q.10.1021/ja909408q20148588
  9. 9. Krapf, D., Quinn, B.M., Wu, M.Y., Zandbergen, H.W., Dekker, C. & Lemay, S.G. (2006). Experimental observation of nonlinear ionic transport at the nanometer scale. Nano Letters 6(11), 2531-2535. DOI: 10.1021/nl0619453.10.1021/nl061945317090086
  10. 10. Sun, P. & Mirkin, M.V. (2006). Kinetics of Electron- -Transfer Reactions at Nanoelectrodes. Anal. Chem. 78(18), 6526-6534. DOI: 10.1021/ac060924q.10.1021/ac060924q16970330
  11. 11. Sun, P., Laforge, F.O., Abeyweera, T.P., Rotenberg, S.A., Carpino, J. & Mirkin, M.V. (2008). Nanoelectrochemistry of mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 105(2), 443-448. DOI: 10.1073/pnas.0711075105.10.1073/pnas.0711075105220655518178616
  12. 12. Velmurugan, J., Noel, J.M., Nogala, W. & Mirkin, M.V. (2012). Nucleation and Growth of Metal on Nanoelectrodes. Chem. Sci. 3, 3307-3314. DOI: 10.1039/C2SC21005C.10.1039/c2sc21005c
  13. 13. Velmurugan, J., Zhan, D.P. & Mirkin, M.V. (2010). Electrochemistry through glass. Nature Chem. 2, 498-502. DOI:10.1038/nchem.645.10.1038/nchem.64520489720
  14. 14. Zhan, D.P., Velmurugan, J. & Mirkin, M.V. (2009). Adsorption/Desorption of Hydrogen on Pt Nanoelectrodes: Evidence of Surface Diffusion and Spillover. J. Am. Chem. Soc. 131(41), 14756-14760. DOI: 10.1021/ja902876v.10.1021/ja902876v19824729
  15. 15. Sun, P. & Mirkin, M.V. (2008). Electrochemistry of Individual Molecules in Zeptoliter Volumes. J. Am. Chem. Soc. 130(26), 8241-8250. DOI: 10.1021/ja711088j.10.1021/ja711088j18540603
  16. 16. Arrigan, D.W.M. (2004) Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129, 1157-1165. DOI: 10.1039/B415395M.10.1039/b415395m15565213
  17. 17. Errachid, A., Mills, C.A., Pla-Roca, M., Lopez, M.J., Villanueva, G., Bausells, J., Crespo, E., Teixidor, F. & Samitier, J. (2008). Focused ion beam production of nanoelectrode arrays. Mater. Sci. Engin. C 28, 777-780. DOI: 10.1016/j. msec.2007.10.077.
  18. 18. Lanyon, Y.H., De Marzi, G., Watson, Y.E., Quinn, A. J., Gleeson, J.P., Redmond, G. & Arrigan, D.W.M. (2007). Fabrication of Nanopore Array Electrodes by Focused Ion Beam Milling. Anal. Chem. 79(8), 3048-3055. DOI: 10.1021/ ac061878x.10.1021/ac061878x17370998
  19. 19. Santschi, C., Jenke, M., Hoffmann, P. & Brugger, J. (2006). Interdigitated 50 nm Ti electrode arrays fabricated using XeF2 enhanced focused ion beam etching. Nanotechnology 17, 2722-2729. DOI:10.1088/0957-4484/17/11/0021.
  20. 20. Triroj, N., Jaroenapibal, P., Shi, H., Yeh, J.I. & Beresford, R. (2011). Microfl uidic chip-based nanoelectrode array as miniaturized biochemical sensing platform for prostate-specific antigen detection. Biosensors and Bioelectronics 26, 2927-33. DOI: 10.1016/j.bios.2010.11.039.10.1016/j.bios.2010.11.03921190835
  21. 21. Moretto, L.M., Tormen, M., De Leo, M., Carpentiero, A. & Ugo, P. (2011). Polycarbonate-based ordered arrays of electrochemical nanoelectrodes obtained by e-beam lithography. Nanotechnology 22, 185305 (7pp). DOI:10.1088/0957-4484/22/18/185305.10.1088/0957-4484/22/18/18530521427473
  22. 22. Lanyon, Y.H. & Arrigan, D.W.M. (2008). Nanostructured materials in electrochemistry. In A. Eftekhari (Ed.), Top-down approaches to the fabrication of nanopatterned electrodes (pp. 187-210). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002/9783527621507.ch3. 10.1002/9783527621507.ch3
Language: English
Page range: 40 - 44
Published on: Oct 3, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Adam Łaszcz, Wojciech Nogala, Andrzej Czerwinski, Jacek Ratajczak, Jerzy Kątcki, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.