Have a personal or library account? Click to login
High Pressure Synthesis versus Calcination – Different Approaches to Crystallization of Zirconium Dioxide Cover

High Pressure Synthesis versus Calcination – Different Approaches to Crystallization of Zirconium Dioxide

Open Access
|Jun 2014

References

  1. 1. Byrappa, K. & Adschiri, T. (2007). Hydrothermal technology for nanotechnology, Prog. Cryst. Growth Ch. 53, 117–166. DOI: 10.1016/j.pcrysgrow.2007.04.001.10.1016/j.pcrysgrow.2007.04.001
  2. 2. Zhu, X.H. & Hang, Q.M. (2013). Microscopical and physical characterization of microwave and microwave-hydrothermal synthesis products, Micron 44, 21–44. DOI: 10.1016/j. micron.2012.06.005.
  3. 3. Riman, R.E., Suchanek, W.L. & Lencka, M.M. (2002). Hydrothermal crystallization of ceramics, Ann. Chim. Sci. Mat. 27 (6), 15–36. DOI: 10.1016/S0151-9107(02)90012-7.10.1016/S0151-9107(02)90012-7
  4. 4. Byrappa, K. & Yoshimura, M. (2000). Handbook of hydrothermal technology, William Andrew Publishing, Waltham, USA.10.1016/B978-081551445-9.50003-9
  5. 5. Franck, E.U. (1970). Water and aqueous solutions at high pressures and temperatures, Pure Appl. Chem. 24, 13–30. DOI: 10.1351/pac197024010013.10.1351/pac197024010013
  6. 6. Franck, E.U. (1973). Properties of water, Int. Corros. Conf. Ser., 109–116.
  7. 7. Kornarneni, S., Li, Q., Stefansson, K.M. & Roy, R. (1993). Microwave-hydrothermal processing for synthesis of electroceramic powders, J. Mater. Res. 8, 3176–3183. DOI: 10.1557/JMR.1993.3176.10.1557/JMR.1993.3176
  8. 8. Roy, R. (1994). Acceleration the kinetics of low-temperature inorganic syntheses, J. Solid State Chem. 111, 11–17. DOI:10.1006/jssc.1994.1192.10.1006/jssc.1994.1192
  9. 9. Switzer, J.A., Hung, C.J., Breyfogle, M., Shumsky, M.G., Vanleeuwen, R. & Golden, T.D. (1994). Electrodeposited Defect Chemistry Superlattices, Science 264, 1573–1576. DOI: 10.1126/science.264.5165.1573.10.1126/science.264.5165.157317769601
  10. 10. Suchanek, W.L., Shuk, P., Byrappa, K., Riman, R.E., TenHuisen, K.S. & Janas, V.F. (2002). Mechanochemical–hydrothermal synthesis of carbonated apatite powders at room temperature, Biomaterials 23, 699–710. DOI: 10.1016/S01429612(01)00158-2.
  11. 11. Puippe, J.C., Acosta, R.E. & von Gutfeld, R.J. (1981). Investigation of laser enhanced electroplating mechanisms, J. Electrochem. Soc. 128, 2539–2545. DOI: 10.1149/1.2127287.10.1149/1.2127287
  12. 12. Kumar, A. & Roy., R. (1988). RESA—A wholly new process for fine oxide powder preparation, J. Mater. Res. 3(6), 1373–1377. DOI: 10.1557/JMR.1988.1373.10.1557/JMR.1988.1373
  13. 13. Ehrlich, H., Simon, P., Motylenko, M., Wysokowski, M., Bazhenov, V.V., Galli, R., Stelling, A.L., Stawski, D., Ilan, M., Stöcker, H., Abendroth, B., Born, R., Jesionowski, T., Kurzydłowski, K.J. & Meyer, D.C. (2013). Extreme Biomimetics: formation of zirconium dioxide nanophase using chitinous scaffolds under hydrothermal conditions, J. Mater. Chem. B 2013, 1, 5092–5099. DOI: 10.1039/C3TB20676A.10.1039/c3tb20676a32261100
  14. 14. Wysokowski, M., Motylenko, M., Bazhenov, V.V., Stawski, D., Petrenko, I., Ehrlich, A., Behm, T., Kljajic, Z., Stelling, A.L., Jesionowski, T. & Ehrlich, H. (2013). Poriferan chitin as a template for hydrothermal zirconia deposition, Front. Mater. Sci. 7(3), 248–260. DOI:10.1007/s11706-013-0212-x.10.1007/s11706-013-0212-x
  15. 15. Wysokowski, M., Motylenko, M., Stöcker, H., Bazhenov, V.V., Langer, E., Dobrowolska, A., Czaczyk, K., Galli, R., Stelling, A.L., Behm, T., Klapiszewski, Ł., Ambrożewicz, D., Nowacka, M., Molodtsov, S.L., Abendroth, B., Meyer, D.C., Kurzydłowski, K.J., Jesionowski, T. & Ehrlich, H. (2013). An extreme biomimetic approach: hydrothermal synthesis of β-chitin/ZnO nanostructured composites, J. Mater. Chem. B 1, 6469–6476. DOI: 10.1039/C3TB21186J.10.1039/c3tb21186j
  16. 16. Opalińska, A., Pielaszek, R., Łojkowski, W., Leonelli, C., Matysiak, H., Wejrzanowski, T. & Kurzydłowski, K.J. (2010). Grain size and grain size distribution of Pr-doped zirconia nanopowders determined by different methods, Materiały Ceramiczne 62, 550–555.
  17. 17. Komarneni, S., Hussein, M.Z., Liu, C., Breval, E. & Malla, P.B. (1995). Microwave-hydrothermal processing of metal clusters supported in and/or on montmorillonite, Eur. J. Solid State Inorg. Chem. 32, 837–849.
  18. 18. Lin, C., Zhang, C. & Lin, J. (2007). Phase transformation and photoluminescence properties of nanocrystalline ZrO2 powders prepared via the Pechini-type sol-gel process, J. Phys. Chem. C 111, 3300–3307. DOI: 10.1021/jp066615l.10.1021/jp066615l
  19. 19. Sridhar, K.R. & Blanchard, J.A. (1999). Electronic conduction in low oxygen partial pressure measurements using an amperometric zirconia oxygen sensor, Sensor. Actuator. B-Chem. 59, 60–67. DOI:10.1016/S0925-4005(99)00233-6.10.1016/S0925-4005(99)00233-6
  20. 20. French, R.H., Glass, S.J., Ohuchi, F.S., Xu, Y.N. & Ching, W.Y. (1994). Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2, Phys. Rev. B 49 (8), 5133–5142. DOI:10.1103/ PhysRevB.49.5133.
  21. 21. Li, Q., Ai, D., Dai, X. & Wang, J. (2003). Photoluminescence of nanometer zirconia powders, Powder Technol. 137, 34–40. DOI: 10.1016/j.powtec.2003.08.028.10.1016/j.powtec.2003.08.028
  22. 22. Feng, Z., Postula, W.S., Akgerman, A. & Anthony, R.G. (1995). Characterization of zirconia-based catalysts prepared by precipitation, calcination and modified sol-gel methods, Ind. Eng. Chem. Res. 34, 78–82. DOI: 10.1021/ie00040a005.10.1021/ie00040a005
  23. 23. Somiya, S. & Akiba, T. (1999). Hydrothermal zirconia powders: A bibliography, J. Eur. Ceram. Soc. 19, 81–87. DOI: 10.1016/S0955-2219(98)00110-1.10.1016/S0955-2219(98)00110-1
  24. 24. Amberg, M. & Gunter, J.R. (1996). Metastable cubic and tetragonal zirconium dioxide, prepared by thermal oxidation of the dichalcogenides, Solid State Ionics 84, 313–321. DOI: 10.1016/0167-2738(96)00020-3.10.1016/0167-2738(96)00020-3
  25. 25. Kaddouri, A., Mazzocchia, C., Tempesti, E. & Anouchinsky, R. (1998). On the activity of ZrO2 prepared by different methods, J. Therm. Anal. 53, 97–109. DOI: 10.1023/A:1010110024557.10.1023/A:1010110024557
  26. 26. McNaught, A. D. & Wilkinson, A. (1997). IUPAC Compendium of chemical terminology, 2nd ed. Blackwell Scientific Publications, Oxford.
  27. 27. Kornarneni, S., Roy, R. & Li, Q.H. (1992). Microwave-hydrothermal synthesis of ceramic powders, Mat. Res. Bull. 27, 1393–1405. DOI: 10.1016/0025-5408(92)90004-J.10.1016/0025-5408(92)90004-J
  28. 28. Bondioli, F., Leonelli, C., Manfredini, T., Ferrari, A.M., Caracoche, M.C., Rivas, P.C. & Rodriguez, A.M. (2005). Microwave-hydrothermal synthesis and hyperfine characterization of praseodymium-doped nanometric zirconia powders, J. Am. Ceram. Soc. 88 (3), 633–638. DOI: 10.1111/j.1551-2916.2005.00093.x.10.1111/j.1551-2916.2005.00093.x
  29. 29. Smits, K., Grigorjeva, L., Millers, D., Sarakovskis, A., Opalinska, A., Fidelus, J.D. & Łojkowski, W. (2010). Europium doped zirconia luminescence, Opt. Mater. 32, 827–831. DOI: 10.1016/j.optmat.2010.03.002.10.1016/j.optmat.2010.03.002
  30. 30. Mingos, D.M.P. (1994). The applications of microwaves in chemical syntheses, Res. Chem. Intermed. 20, 85–91. DOI: 10.1163/156856794X00090.10.1163/156856794X00090
  31. 31. Garvie, R.C. (1978). Stabilization of the tetragonal structure in zirconia microcrystals, J. Phys. Chem. 82 (2), 218–224. DOI: 10.1021/j100491a016.10.1021/j100491a016
  32. 32. Mondal, A. & Ram, S. (2004). Reconstructive phase formation of ZrO2 nanoparticles in a new orthorhombic crystal structure from an energized porous ZrO(OH)2·xH2O precursor, Ceram. Int. 30, 239–249. DOI: 10.1016/S0272-8842(03)00095-6.10.1016/S0272-8842(03)00095-6
  33. 33. Smits, K., Grigorjeva, L., Millers, D., Sarakovskis, A., Grabis, J. & Łojkowski, W. (2011). Intrinsic defect related luminescence in ZrO2, J. Lumin. 131, 2058–2062. DOI: 10.1016/j. jlumin.2011.05.018.
  34. 34. Guo, G.Y., Chen, Y.L. & Ying, W.J. (2004). Thermal, spectroscopic and X-ray diffractional analyses of zirconium hydroxides precipitated at low pH values, Mater. Chem. Phys. 84, 308–314. DOI: 10.1016/j.matchemphys.2003.10.006.10.1016/j.matchemphys.2003.10.006
  35. 35. Zhang, Y.L., Jin, X.J., Rong, Y.H., Hsu, T.Y., Jiang, D.Y. & Shi, J.L. (2006). The size dependence of structural stability in nano-sized ZrO2 particles, Mater. Sci. Eng. A 438–440, 399–402. DOI: 10.1016/j.msea.2006.03.109.10.1016/j.msea.2006.03.109
  36. 36. Glushkova, V.B. & Lapshin, A.N. (2003). Specific features in the behavior of amorphous zirconium hydroxide: I. Sol–gel processes in the synthesis of zirconia, Glass Phys. Chem. 29, 415–421. DOI: 10.1023/A:1025137313344.10.1023/A:1025137313344
Language: English
Page range: 99 - 105
Published on: Jun 26, 2014
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Jarosław Kaszewski, Sergiy Yatsunenko, Iwona Pełech, Ewa Mijowska, Urszula Narkiewicz, Marek Godlewski, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.