Have a personal or library account? Click to login
Comparison of Hydrolytic Resistance of Polyurethanes and Poly(Urethanemethacrylate) Copolymers in Terms of their Use as Polymer Coatings in Contact with the Physiological Liquid Cover

Comparison of Hydrolytic Resistance of Polyurethanes and Poly(Urethanemethacrylate) Copolymers in Terms of their Use as Polymer Coatings in Contact with the Physiological Liquid

Open Access
|Jun 2014

References

  1. 1. Król, P. (2008). Linear Polyurethans. Synthesis methods, chemical structures, properties and applications. Boston, USA: NV. Leiden, The Netherlands Leiden.10.1201/b12145
  2. 2. Yang, Q. & Ye, L. (2013). Mechanical and thermal properties of polyurethane elastomers synthesized with toluene diisocyanate trimer. J. Polym. Sci. Part B: Polym. Phys. 52, 138–154. DOI: 10.1080/00222348.2012.695631.10.1080/00222348.2012.695631
  3. 3. Ahmad, N., Khan, M.B., Ma, X., Ul-Haq, N. & IhtashamUr-Rehman. (2012). Dynamic mechanical characterization of the crosslinked and chain-extended HTPB based polyurethanes. Polym. Compos. 20, 683–692.10.1177/096739111202000803
  4. 4. Liu, C., Zhang, Z., Liu, K.L., Ni, X. & Li, J. (2013). Biodegradable thermogelling poly(ester urethane)s consisting of poly(1,4-butylene adipate), poly(ethylene glycol), and poly(propylene glycol). Soft Matter. 9, 787–794. DOI: 10.1039/ C2SM26719E.10.1039/C2SM26719E
  5. 5. Yamamaoto, K., Kimura, T., Nam, K., Funamoto, S., Ito, Y., Shiba, K., Katoh, A., Shimizu, S., Kurita, K., Hihami, T., Masuzawa, T. & Kishida, A. (2011). Synthetic polymer-tissue adhesion using an ultrasonic scalpel. Surg. Endos. Other Unterventional Techniques 25, 1270–1275. DOI: 10.1007/s00464010-1357-7.
  6. 6. Ma, Z., Hong, Y., Nelson, D.M., Pichamuthu, J.E., Lee-son, C.E. & Wagner, W.R. (2011). Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: Effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromol. 12, 3265–3264. DOI: 10.1021/bm2007168.10.1021/bm200716821761887
  7. 7. Page, J.M., Prieto, E.M., Dumas, J.E., Zienkiewicz, K.J., Wenke, J.C., Brown-Baer, P. & Guelcher, S.A. (2012). Biocompatibility and chemical reaction kinetics of injectable, settable polyurethane/allograft bone biocomposites. Acta Biomater. 8, 4405–4416. DOI: dx.doi.org/10.1016/j.actbio.2012.07.037.10.1016/j.actbio.2012.07.03722871639
  8. 8. Gogolewski, S. (1989). Selected topics in biomedical polyurethanes. A review. Coll. Polym. Sci. 267, 757–185. DOI: 10.1007/BF01410115.10.1007/BF01410115
  9. 9. Król, P. & Byczyński, Ł. (2008). Infiuence of chemical structure on the values of free surface energy oft he coatings made of poly(urethane-siloxane) copolymers. Polimery 53, 808–816. [in Polish].10.14314/polimery.2008.808
  10. 10. Seyedmehdi, S.A., Zhang, H. & Zhu, J. (2013). Fabrication of superhydrophobic coatings based on nanoparticles and fluoropolyurethane. J. Appl. Polym. Sci. 128, 4136-4140. DOI: 10.1002/app.38418.10.1002/app.38418
  11. 11. Król, B., Król, P., Pielichowska, K. & Pikus, S. (2011). Comparison of phase structures and surface free energy values for the coatings synthesised from linear polyurethanes and from waterborne polyurethane cationomers. Coll. Polym. Sci. 289, 757–1767. DOI: 10.1007/s00396-011-2515-8.10.1007/s00396-011-2515-8320881422131639
  12. 12. Wang, L.F. & Wie, Y.H. (2005). Effect of soft segment length on properties of fiuorinated polyurethanes. Coll. Surf. B: Biointerf. 41, 249–255. DOI: dx.doi.org/10.1016/j. colsurfb.2004.12.014.10.1016/j.colsurfb.2004.12.014
  13. 13. Pereira, I.H.L., Ayres, E., Patricio, P.S., Góes, A.M., Gomide, V.S., Junior, E.P. & Oréfice, R.L. (2010). Photopolymerizable and injectable polyurethanes for biomedical applications: Synthesis and biocompatibility. Acta Biomater. 6, 3056–3066. DOI: dx.doi.org/10.1016/j.actbio.2010.02.036.10.1016/j.actbio.2010.02.036
  14. 14. Król, P. & Chmielarz, P. (2013). Synthesis of PMMAb-PU-b-PMMA tri-block copolymers through ARGET ATRP in the presence of air. Express Polym. Lett. 7, 249–260. DOI: 10.3144/expresspolymlett.2013.23.10.3144/expresspolymlett.2013.23
  15. 15. Sharifpoor, S., Labow, R. & Santerre, S.P.J. (2009). Synthesis and characterization of degradable polar hydrophobic ionic polyurethane scaffolds for vascular tissue engineering applications. Biomacromol. 10, 2729–2739. DOI: 10.1021/bm9004194.10.1021/bm9004194
  16. 16. Król, P. & Chmielarz, P. (2011). Controlled radical polymerization (CRP) methods in the synthesis of polyurethane copolymers. Polimery (in Polish) 56, 530–540.10.14314/polimery.2011.530
  17. 17. Verma, H. & Tharanikkarasu, K. (2008). Novel telechelic 2-methyl-2-bromopropionate terminated polyurethane macro-initiator for the synthesis of ABA type tri-block copolymers through atom transfer radical polymerization of methyl methacrylate. Polym. J. 40, 867–874. DOI: 10.1295/polymj.PJ2007236.10.1295/polymj.PJ2007236
  18. 18. Verma, H. & Tharanikkarasu, K. (2010). Atom transfer radical polymerization of methyl methacrylate using telechelic tribromo terminated polyurethane macroinitiator. J. Macromol. Sci. Part A: Pure Appl. Chem. 47, 407–415. DOI: 10.1080/10601321003699671.
  19. 19. Szelest-Lewandowska, A., Masiulanis, B., Klocke, A., Glasmacher, B. & Glasmacher, B. (2003). Synthesis, physical properties and preliminary investigation of hemocompatibility of polyurethanes from aliphatic resources with castor oil participation. J. Biomater. Appl. 17, 221–236. DOI: 10.1177/0885328203017003480.10.1177/0885328203017003480
  20. 20. Mondal, S. & Martin, D. (2012). Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications. Polym. Degrad. Stab. 97, 1553–1561. DOI: 10.1016/j. polymdegradstab.2012.04.008.
  21. 21. Stodolak, E., Paluszkiewicz, C., Błażewicz, M. & Kotela, I. (2009). In vitro biofilms formation on polymer matrix composites. J. Mol. Struct. 924, 562–566. DOI: dx.doi.org/10.1016/j. molstruc.2009.01.017.10.1016/j.molstruc.2009.01.017
  22. 22. Król, P. & Chmielarz, P. (2014). Synthesis of PMMAb-PU-b-PMMA tri-block copolymers through ARGET ATRP of methyl methacrylate using tetraphenylethane-urethane macroiniferter in the presence of air. Polimery. (in Polish) 59, 279–292. DOI: dx.doi.org/10.14314/polimery.2014.279.10.14314/polimery.2014.279
  23. 23. Król, P. & Pilch-Pitera, B. (2003). A study on the synthesis of urethane oligomers. Eur. Polym. J. 39, 1229–1241. DOI: dx.doi.org/10.1016/S0014-3057(02)00375-0.10.1016/S0014-3057(02)00375-0
  24. 24. Owens, D.K., Wendt, R.C. (1969). Estimation of the surface free energy of polymers. J. Appl. Polymer Sci. 13, 1741–1747. DOI: 10.1002/app.1969.070130815.10.1002/app.1969.070130815
  25. 25. Laib, S., Krieg, A., Rankl, M. & Seeger, S. (2006). Supercritical angle fluorescence biosensor for the detection of molecular interactions on cellulose-modified glass surfaces. Appl. Surf. Sci. 252, 7788–7793. DOI: dx.doi.org/10.1016/j. apsusc.2005.09.017.10.1016/j.apsusc.2005.09.017
  26. 26. Zisman, W.A. (1964). Relation of the equilibrium contact angle to liquid and solid constitution. (Eds.) In F.M. Fowkes. Contact Angle, Wettability, and Adhesion. (pp. 1–51). Washington: American Chemical Society. DOI: 10.1021/ba-1964-0043.ch001.10.1021/ba-1964-0043.ch001
  27. 27. Król, P., Lechowicz, J.B. & Król, B. (2013). Modelling the surface free energy parameters of polyurethane coats – part 1. Solvent-based coats obtained from linear polyurethane elastomers. Coll. Polym. Sci. 291, 1031–1047. DOI: 10.1007/ s00396-012-2826-4.10.1007/s00396-012-2826-4360262223525512
  28. 28. Król, P., Lechowicz, J.B. & Król, B. (2013). Modelling the surface free energy parameters of polyurethane coats – part 2. Waterborne coats obtained from cationomer polyurethanes. Coll. Polym. Sci., sent to the Editor.
Language: English
Page range: 16 - 26
Published on: Jun 26, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Piotr Król, Paweł Chmielarz, Bożena Król, Kinga Pielichowska, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.