Have a personal or library account? Click to login
Fabrication and geometric characterization of highly-ordered hexagonally arranged arrays of nanoporous anodic alumina Cover

Fabrication and geometric characterization of highly-ordered hexagonally arranged arrays of nanoporous anodic alumina

Open Access
|Mar 2014

References

  1. 1. Jani, A.M.M., Losic, D. & Voelcker, N.H. (2013). Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci. 58, 636-704. DOI: 10.1016/j.pmatsci.2013.01.002.10.1016/j.pmatsci.2013.01.002
  2. 2. Zaraska, L., Sulka, G.D. & Jaskuła, M. (2012). Fabrication of free-standing copper foils covered with highly-ordered copper nanowires arrays. Appl. Surf. Sci. 258, 7781-7785. DOI: 10.1016/j.apsusc.2012.04.148.10.1016/j.apsusc.2012.04.148
  3. 3. Zaraska, L., Kurowska, E., Sulka, G.D. & Jaskuła, M. (2012). Template-assisted fabrication of tin and antimony based nanowire arrays. Appl. Surf. Sci. 258, 9718-9722. DOI: 10.1016/j. apsusc.2012.06.018.
  4. 4. Feizi, E., Scott, K., Baxendale, M., Pal, C., Ray, A.K., Wang, W., Pang, Y. & Hodgson, S.N.B. (2012). Synthesis and characterisation of nickel nanorods for cold cathode fl uorescent lamps. Mat. Chem. Phys. 135, 832-836. DOI: 10.1016/j. matchemphys.2012.05.066.
  5. 5. Montero-Moreno, J.M., Belenguer, M., Sarret, M. & Műller, C.M. (2009). Production of alumina templates suitable for electrodeposition of nanostructures using stepped techniques. Electrochim. Acta 54, 2529-2535. DOI: 10.1016/j. electacta.2008.03.067.
  6. 6. Liu, P., Singh, V.P., Jarro, C.A. & Rajaputra, S. (2011). Cadmium sulfi de nanowires for the window semiconductor layer in thin fi lm CdS-CdTe solar cells. Nanotechnology 22, 145304. DOI: 10.1088/0957-4484/22/14/145304.10.1088/0957-4484/22/14/14530421346300
  7. 7. Márquez, F., Morant, C., López, V., Zamora, F., Campo, T. & Elizalde, E. (2011). An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks. Nanoscale Res. Lett. 6, 495. DOI: 10.1186/1556-276X-6-495.10.1186/1556-276X-6-495321201021849077
  8. 8. Gomez, H., Riveros, G., Ramirez, D., Henriquez, R., Schrebler, R., Marotti, R. & Dalchiele, E. (2012). Growth and characterization of ZnO nanowire arrays electrodeposited into anodic alumina templates in DMSO solution. J. Solid State Electrochem. 16, 197-204. DOI: 10.1007/s10008-011-1309-8.10.1007/s10008-011-1309-8
  9. 9. Kokonou, M., Ioannou, G., Rebholz, C. & Doumanidis, C.C. (2013). Polymeric nanowires and nanopillars fabricated by template wetting. J. Nanopart. Res. 15, 1552. DOI: 10.1007/ s11051-013-1552-2.
  10. 10. Lee, D.Y., Lee, D.H., Lee, S.G. & Cho, K. (2012). Hierarchical gecko-inspired nanohairs with a high aspect ratio induced by nanoyielding. Soft Mater. 8, 4905-4910. DOI: 10.1039/C2SM07319F.10.1039/c2sm07319f
  11. 11. Yu, Y., Kant, K., Shapter, J.G., Addai-Mensah, J., Losic, D. (2012). Gold nanotube membranes have catalytic properties. Micropor. Mesopor. Mater. 153, 131-136. DOI: 10.1016/j. micromeso.2011.12.011.
  12. 12. Xu, X., Huang, J., Shao, M. & Wang, P. (2012). Synthetic control of large-area, ordered Fe nanotubes and their nanotube-core/ alumina-sheath nanocables. Mat. Chem. Phys. 135, 6-9. DOI: 10.1016/j.matchemphys.2012.04.045.10.1016/j.matchemphys.2012.04.045
  13. 13. Bocchetta, P., Santamaria, M. & Di Quarto, F. (2013). One-step electrochemical synthesis and physicochemical characterization of CdSe nanotubes. Electrochim. Acta 88, 340-346. DOI: http://dx.doi.org/10.1016/j.electacta.2012.09.112.10.1016/j.electacta.2012.09.112
  14. 14. Pitzschel, K., Bachmann, J., Montero-Moreno, J.M., Escrig, J., Görlitz, D. & Nielsch, K. (2012). Reversal modes and magnetostatic interactions in Fe3O4/ZrO2/Fe3O4 multilayer nanotubes. Nanotechnology 23, 495718. DOI: 10.1088/0957-4484/23/49/495718.10.1088/0957-4484/23/49/49571823164751
  15. 15. Sarno, M., Tamburrano, A., Arurault, L., Fontorbes, S., Pantani, R., Datas, L., Ciambelli, P. & Sarto, M.S. (2013). Electrical conductivity of carbon nanotubes grown inside a mesoporous anodic aluminum oxide membrane. Carbon 55, 10-22. DOI: 10.1016/j.carbon.2012.10.063.10.1016/j.carbon.2012.10.063
  16. 16. Li, X., Lim, Y.F., Yao, K., Tay, F.E.H. & Seah, K.H. (2013). Ferroelectric Poly(vinylidene fl uoride) Homopolymer Nanotubes Derived from Solution in Anodic Alumina Membrane Template. Chem. Mater. 25, 524-529. DOI: 10.1021/ cm3028466.10.1021/cm3028466
  17. 17. Xu, X., Huang, J., Shao, M. & Wang, P. (2012). Synthetic control of large-area, ordered Fe nanotubes and their nanotube-core/ alumina-sheath nanocables. Mat. Chem. Phys. 135, 6-9. DOI: 10.1016/j.matchemphys.2012.04.045.10.1016/j.matchemphys.2012.04.045
  18. 18. Norek, M., Stępniowski, W.J., Zasada, D., Karczewski, K., Bystrzycki, J. & Bojar, Z. (2012). H2 absorption at ambient conditions by anodized aluminum oxide (AAO) pattern-transferred Pd nanotubes occluded by Mg nanoparticles. Mat. Chem. Phys. 133, 376-382. DOI: 10.1016/j.matchemphys.2012.01.043.10.1016/j.matchemphys.2012.01.043
  19. 19. Yu, D., Feng, Y., Zhu, Y., Zhang, X., Li, B., Liu, H. (2011). Template synthesis and characterization of molybdenum disulfi de nanotubules. Mat. Res. Bull. 46, 1504-1509. DOI: 10.1016/j.materresbull.2011.04.018.10.1016/j.materresbull.2011.04.018
  20. 20. Valeev, R., Romanov, E., Beltukov, A., Mukhgalin, V., Roslyakov, I. & Eliseev, A. (2012). Structure and luminescence characteristics of ZnS nanodot array in porous anodic aluminum oxide. Phys. Status Sol. C 9, 1462-1465. DOI: 10.1002/ pssc.201100677.10.1002/pssc.201100677
  21. 21. Böhnert, T., Vega, V, Michel, A.K., Prida, V.M. & Nielsch, K. (2013). Magneto-thermopower and magnetoresistance of single Co-Ni alloy nanowires. Appl. Phys. Lett. 103, 092407. DOI: 10.1063/1.4819949.10.1063/1.4819949
  22. 22. Prida, V.M., García, J., Iglesias, L., Vega, V., Görlitz, D., Nielsch, K., Barriga-Castro, E.D., Mendoza-Reséndez, R., Ponce, A. & Luna, C., (2013). Electroplating and magnetostructural characterization of multisegmented Co54Ni46/Co85Ni15 nanowires from single electrochemical bath in anodic alumina templates. Nanoscale Res. Lett. 8, 1-7. DOI: 10.1186/1556-276X-8-263.10.1186/1556-276X-8-263368004923735184
  23. 23. Romero, V., Vega, V., García, J., Zierold, R., Nielsch, K., Prida, V.M., Hernando, B. & Benavente, J. (2013). Changes in morphology and ionic transport induced by ALD SiO2 coating of nanoporous alumina membranes. ACS Appl. Mater. Interf. 5, 3556-3564. DOI: 10.1021/am400300r.10.1021/am400300r23574388
  24. 24. Yang, Z. & Veinot, J.G.C. (2011). Size-controlled template synthesis of metal-free germanium nanowires. J. Mater. Chem. 21, 16505-16509. DOI: 10.1039/c1jm12460a.10.1039/c1jm12460a
  25. 25. Das, G. , Patra, N., Gopalakrishanan, A., Proietti Zaccaria, R., Toma, A, Thorat, S., Di Fabrizio, E., Diaspro, A. & Salerno, M. (2012). Surface enhanced Raman scattering substrate based on gold-coated anodic porous alumina template. Microelectron. Eng. 97, 383-386. DOI: 10.1016/j.mee.2012.02.037.10.1016/j.mee.2012.02.037
  26. 26. Das, G., Patra, N., Gopalakrishnan, A., Zaccaria, R.P., Toma, A., Thorat, S., Di Fabrizio, E., Diaspro, A. & Salerno, M. (2012). Fabrication of large-area ordered and reproducible nanostructures for SERS biosensor application. Analyst. 137, 1785-1792. DOI: 10.1039/c2an16022f.10.1039/c2an16022f
  27. 27. Kurowska, E., Brzózka, A., Jarosz, M., Sulka, G.D. & Jaskuła, M. (2013). Silver nanowire array sensor for sensitive and rapid detection of H2O2. Electrochim. Acta. 104, 439-447. DOI: 10.1016/j.electacta.2013.01.07710.1016/j.electacta.2013.01.077
  28. 28. Sulka, G.D., Hnida, K. & Brzózka, A. (2013). pH sensors based on polypyrrole nanowire arrays. Electrochim. Acta. 104, 536-541. DOI: 10.1016/j.electacta.2012.12.064. 29. Salerno, M., Caneva-Soumetz, F., Pastorino, L., Patra, N., Diaspro, A. & Ruggiero, C. (2013). Adhesion and Proliferation of Osteoblast-Like Cells on Anodic Porous Alumina Substrates With Different Morphology. IEEE Trans. Nanobiosci. 12, 106-111. DOI: 10.1109/TNB.2013.2257835.10.1109/TNB.2013.2257835
  29. 30. Gultepe, E., Nagesha, D., Sridhar, S. & Amiji, M. (2010). Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv. Drug. Deliv. Rev. 62, 305-315. DOI: 10.1016/j.addr.2009.11.003.10.1016/j.addr.2009.11.003
  30. 31. Szuwarzyński, M., Zaraska, L., Zapotoczny, S. & Sulka, G.D. (2013). Pulsatile releasing platform of nanocontainers equipped with thermally responsive polymeric nanovalves. Chem. Mater. 25, 514-520. DOI: 10.1021/cm303930y.10.1021/cm303930y
  31. 32. Ono, S. & Masuko, N. (2003). Evaluation of pore diameter of anodic porous fi lms formed on aluminum. Surf. Coat. Technol. 169-170, 139-142. DOI: 10.1016/S0257-8972(03)00197-X.10.1016/S0257-8972(03)00197-X
  32. 33. Sulka, G.D., Stroobants, S., Moshchalkov, V., Borghs, G. & Celis, J.P. (2002). Synthesis of Well-Ordered Nanopores by Anodizing Aluminum Foils in Sulfuric Acid. J. Electrochem. Soc. 149, D97-D103. DOI: 10.1149/1.1481527.10.1149/1.1481527
  33. 34. Sulka, G.D. & Stępniowski, W.J. (2009). Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures. Electrochim. Acta 54, 3683-3691. DOI: 10.1016/j.electacta.2009.01.046.10.1016/j.electacta.2009.01.046
  34. 35. Stępniowski, W.J., Norek, M., Michalska-Domańska, M. & Bojar, Z. (2013). Ultra-small nanopores obtained by self-organized anodization of aluminum in oxalic acid at low voltages. Mater. Lett. 111, 20-23. DOI: 10.1016/j.matlet.2013.08.059.10.1016/j.matlet.2013.08.059
  35. 36. Stępniowski, W.J., Nowak-Stępniowska, A. & Bojar, Z. (2013). Quantitative arrangement analysis of anodic alumina formed by short anodizations in oxalic acid. Mater. Character. 78, 79-86. DOI: 10.1016/j.matchar.2013.01.013.10.1016/j.matchar.2013.01.013
  36. 37. Zaraska, L., Sulka, G.D. & Jaskuła, M. (2010). The effect of n-alcohols on porous anodic alumina formed by self-organized two-step anodizing of aluminum in phosphoric acid. Surf. Coat. Technol. 204, 1729-1737. DOI: 10.1016/j.surfcoat.2009.10.051.10.1016/j.surfcoat.2009.10.051
  37. 38. Ono, S., Saito, M. & Asoh, H. (2005). Self-ordering of anodic porous alumina formed in organic acid electrolytes. Electrochim. Acta. 51, 827-833. DOI: 10.1016/j.electacta.2005.05.058.10.1016/j.electacta.2005.05.058
  38. 39. Pashchanka, M. & Schneider, J.J. (2013). Experimental validation of the novel theory explaining self-organization in porous anodic alumina fi lms. Phys. Chem. Chem. Phys. 15, 7070-7074. DOI: 10.1039/c3cp50805f.10.1039/c3cp50805f23579574
  39. 40. Kikuchi, T., Yamamoto, T. & Suzuki, R.O. (2013). Growth behavior of anodic porous alumina formed in malic acid solution. Appl. Surf. Sci. 284, 907-913. DOI: 10.1016/j. apsusc.2013.08.044.
  40. 41. Patra, N., Salerno, M., Losso, R., Cingolani, R. (2009). Use of unconventional organic acids as anodization electrolytes for fabrication of porous alumina. 2009 9th IEEE Conference on Nanotechnology, IEEE NANO 2009, 26-30 July 2009 (pp. 567-570). Genoa, Italy. WSxM. http://www.nanotec.es
  41. 42. Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., Colchero, J., Gómez-Herrero, J. & Baro, A.M. (2007). WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705. DOI: 10.1063/1.2432410.10.1063/1.243241017503926
  42. 43. Sulka. G.D. & Parkoła. K.G. (2007). Temperature infl uence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid. Electrochim. Acta. 52, 1880-1888. DOI: 10.1016/j.electacta.2006.07.053.10.1016/j.electacta.2006.07.053
  43. 44. Zaraska. L., Stępniowski. W.J., Ciepiela. E. & Sulka. G.D. (2013). The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid. Thin Solid Films 534, 155-161. DOI: 10.1016/j.tsf.2013.02.056.10.1016/j.tsf.2013.02.056
  44. 45. Pashchanka, M. & Schneider, J.J. (2011). Origin of self-organisation in porous anodic alumina fi lms derived from analogy with Rayleigh-Bénard convection cells. J. Mater. Chem. 21, 18761-18767. DOI: 10.1039/c1jm13898g.10.1039/c1jm13898g
  45. 46. Nielsch, K, Choi, J., Schwirn, K., Wehrspohn, R.B. & Gösele, U. (2002). Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule. Nano Lett. 2, 677-680. DOI: 10.1021/ nl025537k. 10.1021/nl025537k
Language: English
Page range: 63 - 69
Published on: Mar 25, 2014
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Wojciech J. Stępniowski, Agata Nowak-Stępniowska, Marta Michalska-Domańska, Małgorzata Norek, Tomasz Czujko, Zbigniew Bojar, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons License.