Have a personal or library account? Click to login
Monitoring of organophosphorus pesticides and remediation technologies of the frequently detected compound (chlorpyrifos) in drinking water Cover

Monitoring of organophosphorus pesticides and remediation technologies of the frequently detected compound (chlorpyrifos) in drinking water

Open Access
|Sep 2013

References

  1. 1. Tankiewicz, M., Fenik, J. & Biziuk, M. (2010). Determination of organophosphorus and organonitrogen pesticides in water samples ends in. Anal. Chem. 29, 1050-1063. DOI: 10.1016/j.trac.2010.05.008.10.1016/j.trac.2010.05.008
  2. 2. Sosnowska, K., Styszko-Grochowiak, K. & Gołas, J. (2009). Emerging contaminants in aquatic environment-sources, risk and analytical problems Anal. 4, 44-48.
  3. 3. McKinlay, R., Plant, J.A., Bell, J.N.B. & Voulvoulis, N. (2008). Endocrine disrupting pesticides: Implications for risk assessment Environ. Inter., 34, 2, 168-183. DOI: 10.1016/j. envint.2007.07.013.
  4. 4. Lasram, M.M., Annabi, A.B., El-Elj, N., Selmi, S., Kamoun, A., El-Fazaa, S. & Gharbi, N. (2009). Metabolic disorders of acute exposure to malathion in adult wistar rats. J. Hazard. Mat. 163, 1052-1055. DOI:10.1016/j.jhazmat.2008.07.059.10.1016/j.jhazmat.2008.07.05918814961
  5. 5. Derbalah, A.S. (2009). Chemical remediation of carbofuran insecticide in aquatic system by advanced oxidation processes. J. Agric. Res. Kafr Elsheikh Univ. 35 (1), 308-327.
  6. 6. Shawaqfeh, A.T. & Al Momani, F.A. (2010). Photocatalytic treatment of water soluble pesticide by advanced oxidation technologies using UV light and solar energy. Solar Energy, 84, 1157-1165.10.1016/j.solener.2010.03.020
  7. 7. Francisca, M.C., Vilar, V.J.P., Ferreira, Ana, F.C.C., Felipe, D.R.A. & Márcia, D., Sousa, M.A., Goncalves, C., Boaventura Rui, A.R. & Alpendurada, M.F. (2012). Treatment of a pesticide-containing wastewater using combined biological and solar-driven AOPs at pilot scale Chem. Eng. J. 209, 429-441. DOI: 0.1016/j.cej.2012.08.009.
  8. 8. Derbalah, A.S., Nakatani, N. & Sakugawa, H. (2004). Photocatalytic removal of fenitrothion in pure and natural waters by photo-Fenton reaction. Chemosphere, 57, 635-644. DOI: 10.1016/j.
  9. 9. Lines, M.G. (2008). Nanomaterials for practical functional uses. J. Alloys Compd, 449, 242-245. DOI: 10.1016/j.
  10. 10. Mamalis, A.G. (2007). Recent advances in nanotechnology. J. Mat. Process. Technol. 181, 52-58.10.1016/j.jmatprotec.2006.03.052
  11. 11. Miyazaki, K. & Islam, N. (2007). Nanotechnology systems of innovation - an analysis of industry and academia research activities. Technovation, 27, 661-675. DOI: 10.1016/j. technovation.2007.05.009.
  12. 12. Cuenya, B.R. (2010). Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films. 518, 3127-3150. DOI: 10.1016/j.tsf.2010.01.018.10.1016/j.tsf.2010.01.018
  13. 13. Theng, B.K.G. & Yuan, G. (2008). Nanopaticles in the soil environment. Elements 4, 395-399.10.2113/gselements.4.6.395
  14. 14. Feng, J., Hu, X. & Yue, P.L. (2004 a). Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of Orange II. Environ. Sci. Technol. 38, 269-275.10.1021/es034515c14740746
  15. 15. Feng, J., Hu, X. & Yue, P.L. (2004 b). Discoloration and mineralization of Orange II using different heterogeneous catalysts containing Fe: a comparative study. Environ. Sci. Technol. 38, 5773-5778.10.1021/es049811j15575299
  16. 16. Valdés-Solís, T.P., Valle-Vigón, P., Álvarez, S., Marbán, G. & Fuertes, A.B. (2007 a). Encapsulation of nanosized catalysts in the hollow core of a mesoporous carbon capsule. J. Catal. 251, 239-243. DOI: 10.1016/j.jcat.2007.07.006.10.1016/j.jcat.2007.07.006
  17. 17. Valdés-Solís, T.P., Valle-Vigón, P., Álvarez, S., Marbán, G. & Fuertes, A.B. (2007 b). Manganese ferrite nanoparticles synthesized through a nanocasting route as a highly active Fenton catalyst. Catal. Commun. 8, 2037-2042. DOI: 10.1016/j. catcom.2007.03.030.
  18. 18. Zelmanov, G., Semiat, R. (2008). Iron(3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation. Wat. Res. 42, 492-498. DOI: 10.1016/j.watres.2007.07.045.10.1016/j.watres.2007.07.04517714754
  19. 19. Nurmi, J., Tratnyek, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J.C., Matson, D.W., Penn, R.L. & Driessen, M.D. (2005). Characterization and properties of metallic iron nanoparticle: spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol. 39, 1221-1230. DOI: 10.1021/es049190u.10.1021/es049190u
  20. 20. Megharaj, M., , Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N. & Naidu, R. (2011). Bioremediation approaches for organic pollutants: A critical perspectiveReview Environ. Inter. 37, 1362-1375.
  21. 21. Vidali, M. (2001). Bioremediation. An overview. PureAppl. Chem. 73 (7): 1163-1172 . DOI: 10.1351/pac200173071163.10.1351/pac200173071163
  22. 22. Kralj, M.B., Franko, M. & Trebse, P. (2007). Photodegradation of organophosphorus insecticides-Investigations of products and their toxicity using gas chromatography-mass spectrometry and AChE-thermal spectrometric bioassay. Chemosphere 67, 99-107. DOI: 10.1016/j.chemosphere.2006.09.039.10.1016/j.chemosphere.2006.09.039
  23. 23. Simonian, A.L., Efremenko, E.N. & Wild, J.R. (2001). Discriminative detection of neurotoxins in multi-component samples. Anal. Chim. Acta 444, 179-186.10.1016/S0003-2670(01)01099-6
  24. 24. Abdel-Halim, K.Y., Salama, A.K., El-Khateeb, E.N. & Bakry, N.M. (2006). Organophosphorus pollutants (OPP) in aquatic environment at Damietta Governorate, Egypt: Implications for monitoring and biomarker responses. Chemosphere 63, 1491-1498. DOI: 10.1016/j.chemosphere.2005.09.019.10.1016/j.chemosphere.2005.09.019
  25. 25. Abdel-Megeed, A. (2004). Psychrophilic degradation oflong chain alkanes, Unpublished doctoral dissertation, Technical University Hamburg-Harburg, Germany. pp. 158.
  26. 26. Derbalah, A.S., Massoud, A.H. & Belal, E.B. (2008). Biodegrability of famoxadone by various microbial isolates in aquatic system. Land Contamination & Reclama. 16 (1), 13-23. DOI: 10.2462/09670513.876.10.2462/09670513.876
  27. 27. Ellman, G.L., Courtney, K.D., Andres, V. & Featherstone, R.M. (1961). A new and rapid calorimetric determination of acetyl cholinesterase activity. Biochem. Pharmacol. 7, 88-95.10.1016/0006-2952(61)90145-9
  28. 28. Bancroft, J.D. & Stevens, A. (1996). Theory and Practiceof Histological Techniques. (4th ed.). Churchill Livingstone. Edinburg, London, Melbourne and New York.
  29. 29. Abd-Allah, S.W. & Hesham, M.G. (2003). Monitoring of pesticide residues in different sources of drinking water in some rural areas. Alex. J. Agric. Res. 48 (3), 187-199.
  30. 30. Ashry, M.A., Bayoumi, O.C., El-Fakharany, I.I., Derbalah, A.S. & Ismail, A.A. (2006). Monitoring and removal of pesticides residues in drinking water collected from Kafr El-Sheikh governorate, Egypt. J. Agric. Res. Tanta Univ. 32 (3), 691-704.
  31. 31.Aizawa, M.Y.T., Matumoto, N. & Ouna, F. (1994). Degradation of Pesticides by Chlorination During Water Purification. Groundwater Contamination, Environmental Restoration, and Diffuse Source Pollution. Water Sci. Tech. 30, 119-128.10.2166/wst.1994.0323
  32. 32. Aslan, S. (2005). Combined removal of pesticides and nitrates in drinking waters using biodenitrification and sand filter system Process. Biochem. 40, 417-424. DOI: 10.1016/j. procbio.2004.01.030.
  33. 33. Ayranci, E. & Hoda, N. (2005). Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth. Chemosphere. 60, 1600-1607. DOI: 10.1016/j.chemosphere.2005.02.040 .10.1016/j.chemosphere.2005.02.04016083766
  34. 34. Matilainen, A., Vepsäläinen, M. & Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment. A Rev. Advances in Colloid and Interface Sci. 159,189-197. DOI: org/10.1016/j.cis.2010.06.007.10.1016/j.cis.2010.06.00720633865
  35. 35. Sarkar, B.N., Venkateswralu, R., Nageswara, B., Hattacharjeec, C. & Kalea, V. (2007). Treatment of pesticide contaminated surface water for production of potable water by a coagulation-adsorption-nanofiltration approach. Desalination 212, 129-140. DOI: 10.1016/j.desal.2006.09.021.10.1016/j.desal.2006.09.021
  36. 36. He, F., Zhao, D., Liu, J. & Roberts, C.B. (2007). Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Indian Engineer. Chem. Res. 46, 29-34. DOI: 10.1021/ie0610896.10.1021/ie0610896
  37. 37. He, F. & Zhao, D. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol. 39,3314-3320. DOI:10.1021/es048743y.10.1021/es048743y15926584
  38. 38. Hayashi, H., Nakajima, Y. & Ohta, K. (2007). Novel degradation method of organic compounds in human surroundings using iron oxide. Rep. Technol. Res. Institute Osaka Pref. 21, 79-83. DOI: 10.1016/j.chemosphere.2010.11.052.10.1016/j.chemosphere.2010.11.05221146853
  39. 39. Takuya, M., Tokumura, M., Sekine, M. & Kawase, Y. (2011). Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II. Chemosphere 82, 1422-1430. DOI: 10.1016/j.chemosphere.2010.11.052.10.1016/j.chemosphere.2010.11.052
  40. 40. Noorjahan, M., Kumari, V.D., Subrahmanyam, M. & Panda, L. (2005). Immobilized Fe(III)-HY: an efficient and stable photo-Fenton catalyst. Appl. Catal., B 57, 291-298.10.1016/j.apcatb.2004.11.006
  41. 41. Pare, B.P., Singh, S. & Jonnalagadda, B. (2008). Visible light induced heterogeneous advanced oxidation process to degrade pararosanilin dye in aqueous suspension of ZnO. Indian J. Chem. 4, 830-835.
  42. 42. Kwan, W.P. & Voelker, B.M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineral- catalyzed Fenton-like systems. Environ. Sci. Technol. 37, 1150-1158. DOI: 10.1021/es020874g.10.1021/es020874g12680668
  43. 43. Wang, H., Xie, C., Zhang, W., Cai, Z., Cai, S., Yang, Z. & Gui, Y. (2007). Comparison of dye degradation efficiency using ZnO powders with various size scales. J. Hazard. Mat. 141, 645-652.10.1016/j.jhazmat.2006.07.02116930825
  44. 44. Garrido-Ramírez, E.G., Theng, B.K.G. & Mora M.L. (2010). Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - A review Applied Clay Science 47, 182-192. DOI: 10.1016/j.clay.2009.11.044.10.1016/j.clay.2009.11.044
  45. 45. Higa, T. (1995). What is EM Technology. College of Agriculture, University of Ryukyus, Okinawa, Japan.
  46. 46. EM Technology. (1998). Effective Microorganisms for a Sustainable Agriculture and Environment. From Link http://emtech.org/prod01.htmm.
  47. 47. EM Trading (2000). Effective Microorganisms (EM) from Sustainable Community Development. From EM Technology Product Link http://www.emtrading.com.html.
  48. 48. Diver, S. (2001). Nature Farming and Effective Microorganisms’, Rhizosphere II: Publications. from Steve Diver Link http://ncatark.uark.edu/~steved/Nature-Farm-EM.html.
  49. 49. Mulbry, W. & Karns, J. (1989). Purification and characterization of three parathion hydrolases from gram-negative bacterial strains. Appl. Environ. Microbiol. 55, 289-293.10.1128/aem.55.2.289-293.19891841032541658
  50. 50. Borm, P.J., David Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins, R., Stone, V., Kreyling, W., Lademann, J., Krutmann, J., Warheit, D. & Oberdorster, E. (2006). The potential risks of nanomaterials: a review carried out for ECETOC. Particle & Fibre Toxicol. 3, 1-35. DOI: 0.1186/1743-8977-3-11.10.1186/1743-8977-3-11158424816907977
Language: English
Page range: 25 - 34
Published on: Sep 20, 2013
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Aly Derbalah, Ahmed Ismail, Sabry Shaheen, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons License.