Have a personal or library account? Click to login

References

  1. Abbasi, R., Martinez, P., & Ahmad, R. (2022). The digitisation of the agricultural industry: A systematic review of the literature on agriculture 4.0. Smart Agricultural Technology, 2, 100042.
  2. Bhagat, P. R., Naz, F., & Magda, R. (2022). Artificial intelligence solutions enabling sustainable agriculture: A bibliometric analysis. PLoS ONE, 17(6), e0268989. https://doi.org/10.1371/journal.pone.0268989
  3. Chen, X., Yuan, F., Ata-Ul-Karim, S. T., Liu, X., Tian, Y., Zhu, Y., Cao, W., & Cao, Q. (2025). A bibliometric analysis of research on remote sensing-based monitoring of soil organic matter conducted between 2003 and 2023. Artificial Intelligence in Agriculture, 15(1), 26-38. https://doi.org/10.1016/j.aiia.2024.12.004
  4. European Commission. (2025, February 13). Artificial intelligence. Shaping Europe’s digital future. Retrieved February 20, 2025, from https://digital-strategy.ec.europa.eu/en/policies/artificial-intelligence
  5. Ion, R. A., Sterie, C. M., Popescu, M. V., & Sima, A. E. M. (2024). Bibliometric inferences on unfair trade practices in the agricultural sector. Scientific Papers Series Management, Economic Engineering in Agriculture & Rural Development, 24(3), 1-15.
  6. Linaza, M. T., Posada, J., Bund, J., Eisert, P., Quartulli, M., Döllner, J., Pagani, A., Olaizola, I. G., Barriguinha, A., & Moysiadis, T. (2021). Data-driven artificial intelligence applications for sustainable precision agriculture. Agronomy, 11(1227). https://doi.org/10.3390/agronomy11061227
  7. Lungu, D. C. (2024). A bibliometric analysis of performance management and employee well-being. Proceedings of the International Conference on Business Excellence, 18(1), 3023-3035. https://doi.org/10.2478/picbe-2024-0249
  8. Picon, A., Eguskiza, I., Galan, P., Gomez-Zamanillo, L., Romero, J., Klukas, C., Bereciartua-Perez, A., Scharner, M., & Navarra-Mestre, R. (2025). Crop-conditional semantic segmentation for efficient agricultural disease assessment. Artificial Intelligence in Agriculture, 15(1), 79–87. https://doi.org/10.1016/j.aiia.2025.01.002
  9. Qu, G., & Jing, H. (2025). Is new technology always good? Artificial intelligence and corporate tax avoidance: Evidence from China. International Review of Economics & Finance, 98, 103949. https://doi.org/10.1016/j.iref.2025.103949
  10. Sterie, C. M., Petre, L. I., Stoica, G. D., & Dumitru, E. A. (2024). Assessing the impact of digitisation on progress in agriculture: A bibliometric analysis. Proceedings of the International Conference on Business Excellence, 18(1), 1724-1733. https://doi.org/10.2478/picbe-2024-0144
  11. Wang, W., Shi, W., Liu, C., Wang, Y., Liu, L., & Chen, L. (2025). Development of automatic wheat seeding quantity control system based on Doppler radar speed measurement. Artificial Intelligence in Agriculture, 15(1), 12-25. https://doi.org/10.1016/j.aiia.2024.12.001
  12. Yang, C.-X., Baker, L. M., Mattox, A., Diehl, D., & Honeycutt, S. (2025). The forgotten factor: Exploring consumer perceptions of artificial intelligence in the food and agriculture systems. Future Foods, 11, 100553. https://doi.org/10.1016/j.fufo.2025.100553
Language: English
Page range: 5189 - 5199
Published on: Jul 24, 2025
Published by: Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Bogdan-Ionuț Panciu, Gabriela-Larisa Barbu Dragne, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.