References
- Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120. https://doi.org/10.1177/014920639101700108
- Barta, G., & Görcsi, G. (2021). Risk management considerations for artificial intelligence business applications. International Journal of Economics and Business Research, 21(1), 87–106. https://doi.org/10.1504/IJEBR.2021.112012
- Boehm, M. (2018). AI in HR: The new wave of recruitment. Journal of Human Resources Management, 45(3), 215–229.
- Buntak, K., Kovačić, M., & Mutavdžija, M. (2021). Application of artificial intelligence in business. International Journal for Quality Research, 15(2), 403–416. https://doi.org/10.24874/IJQR15.02-03
- Chui, M., Manyika, J., & Miremadi, M. (2018). AI, automation, and the future of work. McKinsey Quarterly, 12(3), 6–11.
- Davenport, T., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116.
- Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559–569.
- Njeru, F. (2023). A review of artificial intelligence and its application in business. Journal of Enterprise and Business Intelligence, 3(1), 44–53. https://doi.org/10.53759/5181/JEBI202303005
- Meghișan-Toma, G.-M., Puiu, S., Florea, N., Meghișan, F., Bădîrcea, R., & Manta, A. (2022). Sustainable transformation of Romanian companies through Industry 4.0, green production, and environmental commitment. Amfiteatru Economic, 24(59), 46–60. https://doi.org/10.24818/EA/2022/59/46
- Ruiz-Real, J. L., Uribe-Toril, J., Torres, J. A., & De Pablo, J. (2021). Artificial intelligence in business and economics research: Trends and future. Journal of Business Economics and Management, 22(1), 98–117. https://doi.org/10.3846/jbem.2020.13641
- Loureiro, S. M. C., Guerreiro, J., & Tussyadiah, I. (2021). Artificial intelligence in business: State of the art and future research agenda. Journal of Business Research, 129, 911–926. https://doi.org/10.1016/j.jbusres.2020.11.001
- Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics, and big data: A revolution that will transform supply chain design and management. Journal of Business Logistics, 34(2), 77–84.
- Brynjolfsson, E., & McAfee, A. (2017). Machine, platform, crowd: Harnessing our digital future. W.W. Norton & Company.
- Russell, S., & Norvig, P. (2021). Artificial intelligence: A modern approach (4th ed.). Pearson.
- Tornatzky, L., & Fleischer, M. (1990). The processes of technological innovation. Lexington Books.
- Van der Aalst, W. (2016). Process mining: Data science in action. Springer.
- Runyue, H. (2021). Artificial intelligence in business-to-business marketing: A bibliometric analysis of current research status, development, and future directions.
- Neamţu, D. M. (2023). Education and economic development: A social and statistical analysis. Springer. https://doi.org/10.1007/978-3-031-20382-4
- IBM HR Analytics Employee Attrition & Performance Dataset. (n.d.). Kaggle. Retrieved from https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset
- UCI Machine Learning Repository. (n.d.). Bank Marketing Dataset. Retrieved from https://archive.ics.uci.edu/dataset/222/bank+marketing
- UCI Machine Learning Repository. (n.d.). Default of Credit Card Clients Dataset. Retrieved from https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients