Have a personal or library account? Click to login

Predictive Modeling for Natural Gas Prices in Romania Using Time Series Data and Average Temperature

Open Access
|Jul 2025

References

  1. Ben Ameur, H., Boubaker, S., Ftiti, Z., Louhichi, W., and Tissaoui, K. (2024). Forecasting commodity prices: empirical evidence using deep learning tools. Annals of Operations Research, 339(1), pp.349–367.
  2. Lago, J., De Ridder, F., and De Schutter, B. (2018). Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. Applied Energy, 221(1), pp.386–405.
  3. Su, M., Zhang, Z., Zhu, Y., Zha, D., and Wen, W. (2019). Data Driven Natural Gas Spot Price Prediction Models Using Machine Learning Methods. Energies, 12(9), p.1680.
  4. Aliyuda, A., Ahmed, M.K., Aliyuda, K., and Bello, A.M. (2021). Deep Neural Network Model for Improving Price Prediction of Natural Gas. International Conference on Data Analytics for Business and Industry (ICDABI), Sakheer, Bahrain, pp.113-117.
  5. Duan, Y., Zhang, J., and Wang, X. (2023). Henry Hub monthly natural gas price forecasting using CEEMDAN–Bagging–HHO–SVR. Frontiers in Energy Research, 11, art. 1323073.
  6. Livieris, I.E., Pintelas, E., Kiriakidou, N., and Stavroyiannis, S. (2020). An Advanced Deep Learning Model for Short-Term Forecasting U.S. Natural Gas Price and Movement. IFIP Advances in Information and Communication Technology, 585, pp.165–176.
  7. Pei, Y., Huang, C.J., Shen, Y., and Wang, M. (2023). A Novel Model for Spot Price Forecast of Natural Gas Based on Temporal Convolutional Network. Energies, 16(5), p.2321.
  8. Schlueter, S., Pappert, S., and Neumann, M. (2024). Interval Forecasts for Gas Prices in the Face of Structural Breaks – Statistical Models vs. Neural Networks. arXiv:2407.16723.
  9. Mouchtaris, D., Sofianos, E., Gogas, P., and Papadimitriou, T. (2021). Forecasting Natural Gas Spot Prices with Machine Learning. Energies, 14(18), p.5782.
  10. Jana, R.K., and Ghosh, I. (2021). A residual driven ensemble machine learning approach for forecasting natural gas prices: analyses for pre-and during-COVID-19 phases. Annals of Operations Research, 301(1), pp.123–143.
  11. Ceperic, E., Žiković, S., and Ceperic, V. (2017). Short-Term Forecasting of Natural Gas Prices using Machine Learning and Feature Selection Algorithms. Energy, 140(1), pp.893–900.
  12. Ping, J., Zhenkun, L., Jianzhou, W., and Lifang, Z. (2021). Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm. Resources Policy, 73, p.102234.
  13. Tang, Y., Wang, Q., Xu, W., Wang, M., and Wang, Z. (2019). Natural Gas Price Prediction with Big Data. IEEE International Conference on Big Data, Los Angeles, USA, pp.5326–5330.
  14. Azadeh, A., Sheikhalishahi, M., and Shahmiri, S. (2012). A hybrid neuro-fuzzy simulation approach for improvement of natural gas price forecasting in industrial sectors with vague indicators. Int. J. Adv. Manuf. Technol., 62, pp.15–33.
  15. Klein, T. (2017). Dynamic correlation of precious metals and flight-to-quality in developed markets. Finance Research Letters, 23, pp.283–290.
  16. Kim, S., and Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), pp.669-679.
  17. Willmott, C.J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), pp.1309–1313.
  18. Mashaly, A.F., Alazba, A.A., Al-Awaadh, A.M., and Mattar, M.A. (2015). Predictive model for assessing and optimizing solar still performance using artificial neural network under hyper arid environment. Solar Energy, 118, pp.41-58.
  19. Cocianu, C.-L., and Uscatu, C.R. (2025). Towards a New MI-Driven Methodology for Predicting the Prices of Cryptocurrencies. Electronics, 14(1).
  20. Koutlis, C., Papadopoulos, S., Schinas, M., and Kompatsiaris, I. (2020). LAVARNET: Neural Network Modeling of Causal Variable Relationships for Multivariate Time Series Forecasting. Applied Soft Computing, 96.
  21. Qian, H., Wen, Q., Sun, L., Gu, J., Niu, Q., and Tang, Z. (2022). RobustScaler: QoS-Aware Autoscaling for Complex Workloads. IEEE 38th International Conference on Data Engineering (ICDE), pp.2762–2775.
  22. Aidoni, A., Kofidis, K., Cocianu, C.L., and Avram, L. (2023). Deep learning models for natural gas demand forecasting: a comparative study of MLP, CNN and LSTM. Romanian Journal of Petroleum & Gas Technology, 4(1), pp.133-148.
Language: English
Page range: 4443 - 4453
Published on: Jul 24, 2025
Published by: Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Artemis Aidoni, Konstantinos Kofidis, Cristian Urse, Alexandru Stoica, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.