References
- Arango, L., Singaraju, S. P. & Niininen, O. (2023). Consumer Responses to AI-Generated Charitable Giving Ads. Journal of Advertising. Routledge. 52(4), 486–503.
- Campbell, C., Plangger, K., Sands & Kietzmann, J. (2022). Preparing for an Era of Deepfakes and AI-Generated Ads: A Framework for Understanding Responses to Manipulated Advertising. Journal of Advertising. 51(1), 22–38.
- Cillo, P., & Rubera, G. (2024). Generative AI in innovation and marketing processes: A roadmap of research opportunities. Journal of the Academy of Marketing Science, 1-18.
- Fui-Hoon Nah, F., Zheng, R., Cai, J., Siau, K., & Chen, L. (2023). Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. Journal of Information Technology Case and Application Research, 25(3), 277-304.
- Ganeva, Z. (2016). Discovering Statistics Using IBM SPSS Statistics. Sofia: Pechat Elestra Ltd.
- Heitmann, M. (2024). Generative AI for Marketing Content Creation: New Rules for an Old Game. NIM Marketing Intelligence Review. 16(1), 10–17.
- Huh, J., Nelson, M. R. & Russell, C. A. (2023). ChatGPT, AI Advertising, and Advertising Research and Education. Journal of Advertising. 52(4), 477–482.
- Kaswan, K. S., Dhatterwal, J. S., Malik, K., & Baliyan, A. (2023, November). Generative AI: A Review on Models and Applications. In 2023 International Conference on Communication, Security and Artificial Intelligence (ICCSAI) (pp. 699-704). IEEE.
- Kshetri, N., Dwivedi, Y. K., Davenport, T. H., & Panteli, N. (2024). Generative artificial intelligence in marketing: Applications, opportunities, challenges, and research agenda. International Journal of Information Management, 75, 102716.
- Li, H. (2019). Special Section Introduction: Artificial Intelligence and Advertising. Journal of Advertising, 48(4), 333–337.
- Mackenzie, S. B. & Lutz, R. J. (1989). An Empirical Examination of the Structural Antecedents of Attitude toward the Ad in an Advertising Pretesting Context. Journal of Marketing. 53(2), 48–65.
- Robbert, K., Penn, C., & Wall, J. (2023). Use cases of large language models in marketing analytics. Applied Marketing Analytics, 9(3), 249-269.
- Sahlool, N. (2024). Navigating the artificial intelligence frontier: Strategic imperatives for safeguarding brand integrity. Journal of Brand Strategy, 13(2), 123-130.
- Sands, S., Demsar, V., Ferraro, C., Campbell, C. & Cohen, J. (2024). Inauthentic inclusion: Exploring how intention to use AI-generated diverse models can backfire. Psychology and Marketing. 41(6), 1396–1413.
- Sarstedt, M., Adler, S.J., Rau, L. & Schmitt, B. (2024). Using large language models to generate silicon samples in consumer and marketing research: Challenges, opportunities, and guidelines. Psychology and Marketing. 41(6), 1254–1270.
- Singolda, A. & Heitmann, M. (2024). One-Stop Campaigns: How Generative AI Is Transforming Digital Advertising. NIM Marketing Intelligence Review. 16(1), 56-62.
- Teubner, T., Flath, C. M., Weinhardt, C., van der Aalst, W., & Hinz, O. (2023). Welcome to the era of ChatGPT et al.: The prospects of large language models. Business & Information Systems Engineering, 65, 95–101.
- Yang, J. (2023). Preparing for the New Era of Artificial Intelligence: My Experience of Teaching “Artificial Intelligence in Advertising”. Journal of Advertising Education. 27(2), 101-116.