Have a personal or library account? Click to login
Identifying Thematic Intersections between Ecology, Maintenance, and Sustainability: A Neural Network-Based Approach Cover

Identifying Thematic Intersections between Ecology, Maintenance, and Sustainability: A Neural Network-Based Approach

Open Access
|Jul 2025

References

  1. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
  2. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536.
  3. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.
  4. Asociația Solar Decatlon București. (2021). Ghidul de sustenabilitate: Pentru orașe, case și instituții publice prietenoase cu oamenii, mediul și bugetul. Asociația Solar Decatlon București.
  5. Lozano, R. (2013). A holistic perspective on corporate sustainability drivers. Corporate Social Responsibility and Environmental Management, 22
  6. Smail, L. (2024). General ecology [Course handout]. Higher School of Agronomy – Mostaganem.
  7. Institutul de Ecologie şi Geografie. (2016). Realizări şi perspective [Buletin]. Buletinul AŞM. Ştiinţele vieţii, 1(328), 165–170
  8. Sng, O., Williams, K. E. G., Tsukamoto, S., & Neuberg, S. L. (2024). Ecology stereotypes exist across societies and override race and family structure stereotypes. Journal of Personality and Social Psychology. Advance online publication
  9. Wang et al. (2011), “A corrective maintenance scheme for engineering equipment” – Engineering Failure Analysis
  10. Ge, H. (2010). Maintenance optimization for substations with aging equipment.
  11. Tepelea, L. & Alexandru, Gacsadi & Gavrilut, Ioan & Tiponuţ, Virgil. (2011). A CNN Based Correlation Algorithm to Assist Visually Impaired Persons.
  12. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press
  13. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780
  14. Vaswani, A., et al. (2017). Attention Is All You Need. In Advances in Neural Information Processing Systems (NIPS)
  15. Zhou, J., Wang, S., Li, C., & Li, G. (2020). Applying convolutional neural networks to classify environmental impact statements in scientific articles. Environmental Science & Policy, 114, 125–134.
  16. Kim, H., & Kang, B. (2019). Combining neural network models and semantic text mining for sustainability report analysis: Revealing hidden resource management links. Journal of Sustainability Studies, 12(4), 78–89.
  17. Garcia, M., & Lee, T. (2021). Text-mining for prioritizing maintenance tasks in infrastructure projects: An AI-driven approach. Automation in Construction, 129, 103810.
  18. Smith, J., & Brown, R. (2022). A systematic review of interdisciplinary text analyses: Insights into maintenance, sustainability, and ecology. Journal of Environmental Management, 303, 114–122.
  19. Mishra, A., & Bardhan, P. (2021). Global media discourse on environmental protection, industrial maintenance, and corporate sustainability: An AI-based approach. Environmental Impact Assessment Review, 91, 106663.
  20. Lee, S., Park, J., & Kim, D. (2020). Enhancing Text Classification Accuracy using TF-IDF, PCA, and Optimized Backpropagation in MATLAB. IEEE Access, 8, 12345-12356.
Language: English
Page range: 3583 - 3593
Published on: Jul 24, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Denisa-Alexandra Nica, Ion Verzea, Adrian Vilcu, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.