References
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
- Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536.
- Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.
- Asociația Solar Decatlon București. (2021). Ghidul de sustenabilitate: Pentru orașe, case și instituții publice prietenoase cu oamenii, mediul și bugetul. Asociația Solar Decatlon București.
- Lozano, R. (2013). A holistic perspective on corporate sustainability drivers. Corporate Social Responsibility and Environmental Management, 22
- Smail, L. (2024). General ecology [Course handout]. Higher School of Agronomy – Mostaganem.
- Institutul de Ecologie şi Geografie. (2016). Realizări şi perspective [Buletin]. Buletinul AŞM. Ştiinţele vieţii, 1(328), 165–170
- Sng, O., Williams, K. E. G., Tsukamoto, S., & Neuberg, S. L. (2024). Ecology stereotypes exist across societies and override race and family structure stereotypes. Journal of Personality and Social Psychology. Advance online publication
- Wang et al. (2011), “A corrective maintenance scheme for engineering equipment” – Engineering Failure Analysis
- Ge, H. (2010). Maintenance optimization for substations with aging equipment.
- Tepelea, L. & Alexandru, Gacsadi & Gavrilut, Ioan & Tiponuţ, Virgil. (2011). A CNN Based Correlation Algorithm to Assist Visually Impaired Persons.
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780
- Vaswani, A., et al. (2017). Attention Is All You Need. In Advances in Neural Information Processing Systems (NIPS)
- Zhou, J., Wang, S., Li, C., & Li, G. (2020). Applying convolutional neural networks to classify environmental impact statements in scientific articles. Environmental Science & Policy, 114, 125–134.
- Kim, H., & Kang, B. (2019). Combining neural network models and semantic text mining for sustainability report analysis: Revealing hidden resource management links. Journal of Sustainability Studies, 12(4), 78–89.
- Garcia, M., & Lee, T. (2021). Text-mining for prioritizing maintenance tasks in infrastructure projects: An AI-driven approach. Automation in Construction, 129, 103810.
- Smith, J., & Brown, R. (2022). A systematic review of interdisciplinary text analyses: Insights into maintenance, sustainability, and ecology. Journal of Environmental Management, 303, 114–122.
- Mishra, A., & Bardhan, P. (2021). Global media discourse on environmental protection, industrial maintenance, and corporate sustainability: An AI-based approach. Environmental Impact Assessment Review, 91, 106663.
- Lee, S., Park, J., & Kim, D. (2020). Enhancing Text Classification Accuracy using TF-IDF, PCA, and Optimized Backpropagation in MATLAB. IEEE Access, 8, 12345-12356.