References
- Alexiev, V., Bechev, B., & Ositsyn, A. (2023). The InnoGraph Artificial Intelligence Taxonomy: A Key to Unlocking AI-Related Entities and Content. Ontotext. Retrieved from https://www.ontotext.com/
- Alkhatlan, A., & Kalita, J. (2019, March). Intelligent Tutoring Systems: A Comprehensive Historical Survey with Recent Developments. International Journal of Computer Applications Vol. 181 - No.43, 181(43), 1-20.
- Anderson, J. (1993). Rules of the mind. Hillsdale, USA: Lawrence Erlbaum Associates.
- Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ, USA: Erlbaum.
- Bloom, B. (1982). Taxonomy of Educational Objectives. New York: Longman Inc.
- Brown, J., Burton, R. R., & Zdyel, F. (1973). A model-driven question-answering sstem for mixed-initiative computer-assisted instruction. IEEE Transactions on Systems, Man and Cybernetics 3, 248 - 257.
- Brown, J., Burton, R., & Bell, A. (1974). SOPHIE: a sophisticated instructional environment for teaching electronic troubleshooting. BBN Report 2790.
- Carbonell, J. (1970). AI in CAI : An artificial intelligence approach to computer-assisted instruction. IEEE Transactions on Man-Machine Systems, vol. 11, no. 4, 190-202.
- Carbonell, J. (1970). Intelligent Computer-Assisted Instruction (ICAI).
- Chiu, T., Ahmad, Z., Ismailov, M., & Sanusi, I. T. (2024). What are artificial intelligence literacy and competency? A comprehensive framework to support them. Computers and Education Open, 1-9.
- Collins, A. (1977). Processes in Acquiring Knowledge. In R. Anderson, R. Spiro, & W. Montague, Schooling and the Acquisition of Knowledge. Hillsdale, NJ, USA: Lawrence Erlbaum Associates.
- Concordia University and Dawson College. (2021, September). Artificial Intelligence Competency Framework. A success pipeline from college to university and beyond. Retrieved January 15, 2025, from Dawson College: https://www.dawsoncollege.qc.ca/ai/wp-content/uploads/sites/180/Corrected-FINAL_PIA_ConcordiaDawson_AICompetencyFramework.pdf
- Corbett, A. T., & Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction (4), pp. 253-278.
- Dai, M., Hung, J., Tang, H., & Li, H. (2021). Knowledge Tracing: A Review of Available Techniques. Journal of Educational Technology Development and Exchange, 14(2), 1-20.
- Desmarais, M. C., Maluf, A., & Liu, J. (1996). User-expertise modeling with empirically derived probabilistic implication networks. User Modeling and User-Adapted Interaction (5), 283 - 315.
- Doignon, J.-P., & Falmagne, J.-C. (1985). Spaces for the assessment of knowledge. International Journal of Man-Machine Studies (23), 175-196.
- Doignon, J.-P., & Falmagne, J.-C. (2015). Knowledge Spaces and Learning Spaces. arXiv:1511.06757v1.
- Dowling, C. E. (1994). Integrating different knowledge spaces. Contributions to Mathematical Psychology, Psychometrics, and Methodology, 149-158.
- Falmagne, J.-C., & Doignon, J.-P. (2011). Learning Spaces. Interdisciplinary Applied Mathematics. Berlin: Springer - Verlag Berlin Heidelberg.
- Falmagne, J.-C., Doignon, J.-P., Koppen, M., Vilano, M., & Johannesen, L. (1990). Introduction to Knowledge Spaces: How to Build, Test, and Search Them. Psychological Review Vol 97 (2), 201 - 224.
- Gioia, D., Corley, K., & Hamilton, A. (2013). Seeking Qualitative Rigor in Inductive Research. Organizational Research Methods 16(1), 15-31.
- Hayashi, Y., Bourdeau, J., & Mizoguchi, R. (2009). Using Ontological Engineering to Organize Learning/Instructional Theories and Build a Theory-Aware Authoring System. International Journal of Artificial Intelligence in Education 19, 211-252.
- Jorzik, P., Yigit, A., Kanbach, D. K., Kraus, S., & Dabic’, M. (2024). Artificial Intelligence-Enabled Business Model Innovation: Competencies and Roles of Top Management. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 7044 - 7056.
- Koppen, M. (1993). Extracting human expertise for constructing knowledge spaces: An algorithm. Journal of Mathematical Psychology 37 (1), 1-20.
- Long Duri, M. B. (2020). What Is AI Literacy? Competencies and Design Considerations. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1-16). Honolulu, USA: Association for Computing Machinery, NY, USA.
- Massri, M. S. (2023). Towards InnoGraph: A Knowledge Graph for AI Innovation. 3rd International Workshop on Scientific Knowledge Representation, Discovery, and Assessment (Sci-K 2023). (pp. 843–849). Austin TX USA: WWW 2023 Companion Proceedings.
- Mitrovic, A. (1998). Learning SQL with a computerized tutor. 29th ACM SIGCSE technical symposium, (pp. 307–311).
- Mizoguchi, R., & Bourdeau, J. (2000). Using ontological engineering to overcome common AIED problems. International Journal of Artificial Intelligence in Education, 11 (2), 107-121.
- Müller, C. E. (1989). A procedure for facilitating an expert’s judgments on a set of rules. (B. H. Springer, Ed.) Mathematical Psychology in Progress. Recent Research in Psychology., 157-170.
- Negură, C. (2024). An intelligent tutoring System for developing AI competency in business management professionals. Proceedings of the 19th International Conference on Virtual Learning. 19, pp. 171-178. Bucharest: National Institute for Research & Development in Informatics – ICI Bucharest. doi:https://doi.org/10.58503/icvl-v19y202414
- Negură, C. (2025). An ontology of knowledge components in the domain of Artificial Intelligence. Proceedings of the 20th International Conference on Virtual Learning (p. tbd). Bucharest: National Institute for Research & Development in Informatics – ICI Bucharest.
- Negură, C. (2025). What Do Manager Need to Know in the Field of Artificial Intelligence ? Proceedings of the INTED Conference. Valencia: IATED.
- Negură, C., & Ionescu, S. (2024). An Intelligent Training System for Business. FAIMA Business & Management Journal, Vol.12 (3), 43-52.
- Newell, A., & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, N.J., USA: Prentice-Hall.
- Nkambou, R., Bourdeau, J., & Mizoguchi, R. (2010). Advances in Intelligent Tutoring Systems. Beriln: Springer.
- Nwana, H. S. (December 1990). Intelligent Tutoring Systems: an overview. Artificial Intelligence Review, 251-277.
- Ohlsson, S. (1996). Learning from performance errors. Psychological Review 103, pp. 241-262.
- Pavlik, P. J., Browner, K., Olney, A., & Mitrovic, A. (2015). A Review of Student Models Used in Intelligent Tutoring Systems (Chapter 5). In R. Sottilare, A. Graesser, X. Hu, & H. Holden, Design Recommendations for Intelligent Tutoring Systems- Volume 1: Learner Modeling (pp. 39 - 68). Memphis: U.S. Army Research Laboratory - Human Research and Engineering Directorate.
- Peifer, Y., & Terstegen, S. (2024). Artificial Intelligence - Qualification and Competence Development Requirements for Executives. 5th International Conference on Industry 4.0 and Smart Manufacturing (pp. 736 - 744). Procedia Computer Science 232: Elsevier B.V.
- Piech, C., Spencer, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L., & Sohl-Dickstein, J. (2015). Deep Knowledge Tracing. Retrieved from arXiv preprint arXiv:1506.05908.
- Rodrigues, M., Fernández-Macías, E., & Sostero, M. (2021/02). A unified conceptual framework of tasks, skills and competences,. Seville: European Commission: European Commission, Joint Research Centre (JRC). Retrieved from https://joint-research-centre.ec.europa.eu/reports-and-technical-documentation/unified-conceptual-framework-tasks-skills-and-competences_en
- Sleeman, D., & Brown, J. (1982). Intelligent Tutoring Systems. New York: Academic Press.
- Sleeman, D., & Brown, J. S. (1982). Intelligent Tutoring Systems. London ; New York: Academic Press.
- Spencer, L. M., & Spencer, S. M. (1993). Competence at Work: Models for Superior Performance. Wiley.
- Wenger, E. (1987). Artificial Intelligence and Tutoring Systemss: Computational and Cognitive Approaches to the Communication of Knowledge. Los Altos: Morgan Kaufmann Publishers Inc.
- Woolf, B. (2009). Building Intelligent Interactive Tutors: Student-centered strategies for revolutionizing e-learning. Burlington: Morgan Kaufmann Publishers (Elsevier).
- Zhang, J., Shi, X., King, I., & Yeung, D.-Y. (2017). Dynamic key-value memory networks for knowledge tracing. Proceedings of the 26th international conference on world wide web, (pp. 765 - 774).