Have a personal or library account? Click to login
Artificial Intelligence for Product Innovation: A Bibliometric Analysis Cover

Artificial Intelligence for Product Innovation: A Bibliometric Analysis

Open Access
|Jul 2025

References

  1. Ameen, N., Sharma, G. D., Tarba, S., Rao, A., & Chopra, R. (2022). Toward advancing theory on creativity in marketing and artificial intelligence. Psychology & Marketing, 39(9), 1802– 1825. https://doi.org/10.1002/mar.21699
  2. Appio, F. P., Frattini, F., Petruzzelli, A. M., & Neirotti, P. (2021). Digital Transformation and Innovation Management: A Synthesis of Existing Research and an Agenda for Future Studies. Journal of Product Innovation Management, 38(1), 4–20. https://doi.org/10.1111/jpim.12562
  3. Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
  4. Babina, T., Fedyk, A., He, A., & Hodson, J. (2024). Artificial intelligence, firm growth, and product innovation. Journal of Financial Economics, 151, 103745. https://doi.org/10.1016/j.jfineco.2023.103745
  5. Bahoo, S., Cucculelli, M., & Qamar, D. (2023). Artificial intelligence and corporate innovation: A review and research agenda. Technological Forecasting and Social Change, 188, 122264. https://doi.org/10.1016/j.techfore.2022.122264
  6. Blichfeldt, H., & Faullant, R. (2021). Performance effects of digital technology adoption and product & service innovation – A process-industry perspective. Technovation, 105, 102275. https://doi.org/10.1016/j.technovation.2021.102275
  7. Bouschery, S. G., Blazevic, V., & Piller, F. T. (2023). Augmenting human innovation teams with artificial intelligence: Exploring transformer-based language models. Journal of Product Innovation Management, 40(2), 139–153. https://doi.org/10.1111/jpim.12656
  8. Bughin, J. (2024). What drives the corporate payoffs of using generative artificial intelligence? Structural Change and Economic Dynamics, 71, 658–668. https://doi.org/10.1016/j.strueco.2024.09.011
  9. Chatterjee, S., Chaudhuri, R., & Vrontis, D. (2024). Does data-driven culture impact innovation and performance of a firm? An empirical examination. Annals of Operations Research, 333(2–3), 601–626. https://doi.org/10.1007/s10479-020-03887-z
  10. Chaudhuri, R., Chatterjee, S., Vrontis, D., & Thrassou, A. (2024). Adoption of robust business analytics for product innovation and organizational performance: The mediating role of organizational data-driven culture. Annals of Operations Research, 339(3), 1757–1791. https://doi.org/10.1007/s10479-021-04407-3
  11. Climent, R. C., Haftor, D. M., & Staniewski, M. W. (2024). AI-enabled business models for competitive advantage. Journal of Innovation & Knowledge, 9(3), 100532. https://doi.org/10.1016/j.jik.2024.100532
  12. Cooper, R. G. (2024). The AI transformation of product innovation. Industrial Marketing Management, 119, 62–74. https://doi.org/10.1016/j.indmarman.2024.03.008
  13. Cooper, R. G., & Brem, A. M. (2024). The Adoption of AI in New Product Development: Results of a Multi-Firm Study in the US and Europe. Research-Technology Management, 67(3), 44–53. https://doi.org/10.1080/08956308.2024.2324241
  14. Davenport, T. H. (2018). From analytics to artificial intelligence. Journal of Business Analytics, 1(2), 73–80. https://doi.org/10.1080/2573234X.2018.1543535
  15. Del Giudice, M., Scuotto, V., Ballestra, L. V., & Pironti, M. (2022). Humanoid robot adoption and labour productivity: A perspective on ambidextrous product innovation routines. The International Journal of Human Resource Management, 33(6), 1098–1124. https://doi.org/10.1080/09585192.2021.1897643
  16. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
  17. Ellegaard, O. (2018). The application of bibliometric analysis: Disciplinary and user aspects. Scientometrics, 116(1), 181–202. https://doi.org/10.1007/s11192-018-2765-z
  18. Enholm, I. M., Papagiannidis, E., Mikalef, P., & Krogstie, J. (2022). Artificial Intelligence and Business Value: A Literature Review. Information Systems Frontiers, 24(5), 1709–1734. https://doi.org/10.1007/s10796-021-10186-w
  19. Hervas-Oliver, J.-L., Sempere-Ripoll, F., & Boronat-Moll, C. (2021). Technological innovation typologies and open innovation in SMEs: Beyond internal and external sources of knowledge. Technological Forecasting and Social Change, 162, 120338. https://doi.org/10.1016/j.techfore.2020.120338
  20. Hutchinson, P. (2021). Reinventing Innovation Management: The Impact of Self-Innovating Artificial Intelligence. IEEE Transactions on Engineering Management, 68(2), 628–639. https://doi.org/10.1109/TEM.2020.2977222
  21. Jerdea, L. (2023). A Bibliometric Analysis of four Constructs Interconnections: Innovation, Competitive Advantage, Agility and Performance. Proceedings of the International Conference on Business Excellence, 17(1), 1213–1226. https://doi.org/10.2478/picbe-2023-0109
  22. Jorzik, P., Klein, S. P., Kanbach, D. K., & Kraus, S. (2024). AI-driven business model innovation: A systematic review and research agenda. Journal of Business Research, 182, 114764. https://doi.org/10.1016/j.jbusres.2024.114764
  23. Kakatkar, C., Bilgram, V., & Füller, J. (2020). Innovation analytics: Leveraging artificial intelligence in the innovation process. Business Horizons, 63(2), 171–181. https://doi.org/10.1016/j.bushor.2019.10.006
  24. Lee, I., & Shin, Y. J. (2020). Machine learning for enterprises: Applications, algorithm selection, and challenges. Business Horizons, 63(2), 157–170. https://doi.org/10.1016/j.bushor.2019.10.005
  25. Li, L., Gu, F., Li, H., Guo, J., & Gu, X. (2021). Digital Twin Bionics: A Biological Evolution-Based Digital Twin Approach for Rapid Product Development. IEEE Access, 9, 121507– 121521. https://doi.org/10.1109/ACCESS.2021.3108218
  26. Liu, C. (2024). The application of AI and product innovation efficiency: The role of knowledge innovation under SECI model. Aslib Journal of Information Management. https://doi.org/10.1108/AJIM-04-2024-0348
  27. Loureiro, S. M. C., Guerreiro, J., & Tussyadiah, I. (2021). Artificial intelligence in business: State of the art and future research agenda. Journal of Business Research, 129, 911–926. https://doi.org/10.1016/j.jbusres.2020.11.001
  28. Mariani, M. M., Machado, I., & Nambisan, S. (2023). Types of innovation and artificial intelligence: A systematic quantitative literature review and research agenda. Journal of Business Research, 155, 113364. https://doi.org/10.1016/j.jbusres.2022.113364
  29. Marion, T. J., & Fixson, S. K. (2021). The Transformation of the Innovation Process: How Digital Tools are Changing Work, Collaboration, and Organizations in New Product Development*. Journal of Product Innovation Management, 38(1), 192–215. https://doi.org/10.1111/jpim.12547
  30. Oluwaseun Badmus, Shahab Anas Rajput, John Babatope Arogundade, & Mosope Williams. (2024). AI-driven business analytics and decision making. World Journal of Advanced Research and Reviews, 24(1), 616–633. https://doi.org/10.30574/wjarr.2024.24.1.3093
  31. Perifanis, N.-A., & Kitsios, F. (2023). Investigating the Influence of Artificial Intelligence on Business Value in the Digital Era of Strategy: A Literature Review. Information, 14(2), 85. https://doi.org/10.3390/info14020085
  32. Pisoni, G., & Díaz-Rodríguez, N. (2023). Responsible and human centric AI-based insurance advisors. Information Processing & Management, 60(3), 103273. https://doi.org/10.1016/j.ipm.2023.103273
  33. Rampersad, G. (2020). Robot will take your job: Innovation for an era of artificial intelligence. Journal of Business Research, 116, 68–74. https://doi.org/10.1016/j.jbusres.2020.05.019
  34. Santos, G., Gomes, S., Braga, V., Braga, A., Lima, V., Teixeira, P., & Sá, J. C. (2019). Value creation through quality and innovation—A case study on Portugal. The TQM Journal, 31(6), 928–947.
  35. Sestino, A., & De Mauro, A. (2022). Leveraging Artificial Intelligence in Business: Implications, Applications and Methods. Technology Analysis & Strategic Management, 34(1), 16–29. https://doi.org/10.1080/09537325.2021.1883583
  36. Vătămănescu, E.-M., & Alexandru, V.-A. (2018). Beyond Innovation: The Crazy New World of Industrial Mash-ups. In E.-M. Vătămănescu & F. M. Pînzaru (Eds.), Knowledge Management in the Sharing Economy (Vol. 6, pp. 271–285). Springer International Publishing. https://doi.org/10.1007/978-3-319-66890-1_14
  37. Vătămănescu, E.-M., Mitan, A., Andrei, A. G., & Ghigiu, A. M. (2022). Linking coopetition benefits and innovative performance within small and medium-sized enterprises networks: A strategic approach on knowledge sharing and direct collaboration. Kybernetes, 51(7), Article 7. https://doi.org/10.1108/K-11-2020-0731
  38. Viveiros Lopes, A. P., Kissimoto, K. O., Salerno, M. S., de Carvalho, M. M., & Barbin Laurindo, F. J. (2016). Innovation management: A systematic analysis of the innovation management evolution. Brazilian Journal of Operations & Production Management, 13(1), 16–30.
  39. Zhang, H., Bai, X., & Ma, Z. (2022). Consumer reactions to AI design: Exploring consumer willingness to pay for AI-designed products. Psychology & Marketing, 39(11), 2171– 2183. https://doi.org/10.1002/mar.21721
Language: English
Page range: 3538 - 3552
Published on: Jul 24, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Ioan-Loreni Jerdea, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.