Have a personal or library account? Click to login
Artificial Intelligence and Organizational Sustainability: Neural Network Modeling for Probability-Based Scoring Cover

Artificial Intelligence and Organizational Sustainability: Neural Network Modeling for Probability-Based Scoring

Open Access
|Jul 2025

References

  1. Alharithi, F. S., &amp; Alzahrani, A. A. (2024). Enhancing environmental sustainability with federated LSTM models for AI-driven optimization. <em>Alexandria Engineering Journal, 108</em>, 640-653.
  2. Ali, S., Riaz, S., Liu, X., &amp; Wang, G. (2023). A Levenberg–Marquardt based neural network for short-term load forecasting. <em>Computers, Materials and Continua</em>, <em>75</em>(1), 1783-1800.
  3. Bocken, N. M. P., Short, S. W., Rana, P., &amp; Evans, S. (2014). A literature and practice review to develop sustainable business model archetypes. <em>Journal of Cleaner Production, 65</em>, 42-56.
  4. Choudhary, A., Bansal, P., Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S. D., Tegmark, M., &amp; Fuso Nerini, F. (2019). Artificial intelligence in sustainability: Emerging perspectives and practices. <em>Nature Communications, 10</em>(1), 1-9.
  5. Corrado, S., &amp; Sala, S. (2018). Bioeconomy contribution to circular economy. In Benetto, E., Gericke, K., Guiton, M. (eds), <em>Designing sustainable technologies, products and policies: From science to innovation</em> (pp. 49–59). Springer, Cham.
  6. Geissdoerfer, M., Savaget, P., Bocken, N. M., &amp; Hultink, E. J. (2017). The circular economy – A new sustainability paradigm? <em>Journal of Cleaner Production, 143</em>, 757-768.
  7. Herghiligiu, I. V., Robu, I. B., Pislaru, M., Vilcu, A., Asandului, A. L., Avasilcăi, S., &amp; Balan, C. (2019). Sustainable environmental management system integration and business performance: A balance assessment approach using fuzzy logic. <em>Sustainability, 11</em>(5311).
  8. Herghiligiu, I. V., Robu, I. B., Vilcu, A., &amp; Pislaru, M. (2021). Organizational sustainability main components identification using PCA. <em>Proceedings of the 7th International Symposium TTPF 2021</em>, Iași, Romania, 256-262.
  9. Herghiligiu, I. V., Robu, I. B., Vilcu, A., Pislaru, M., Pohonu-Dragomir, S. C., Cojocaru, M., &amp; Herghiligiu, C. M. (2024). Organizational sustainability score - Probability approach using fuzzy logic. <em>Environmental Engineering and Management Journal, 23</em>(2), 979-992.
  10. Hsu, W.-L., Lin, Y.-L., Lai, J.-P., Liu, Y.-H., &amp; Pai, P.-F. (2025). Forecasting Corporate Financial Performance Using Deep Learning with Environmental, Social, and Governance Data. <em>Electronics</em>, <em>14</em>(3), 417.
  11. Hubbard, G. (2009). Measuring organizational performance: Beyond the triple bottom line. <em>Business Strategy and the Environment</em>, 18(3), 177-191.
  12. Jain, L. C., &amp; Vemuri, V. R. (1999). <em>Industrial applications of neural networks</em>. CRC Press.
  13. Khalid, J., Chuanmin, M., Altaf, F., Shafqat, M. M., Khan, S. K., &amp; Ashraf, M. U. (2024). AI-driven risk management and sustainable decision-making: Role of perceived environmental responsibility. <em>Sustainability, 16</em>(16), 6799.
  14. Nikolaou, I. E., Tsalis, T. A., &amp; Evangelinos, K. I. (2019). A framework to measure corporate sustainability performance: A strong sustainability-based view of firm. <em>Sustainable Production and Consumption, 18</em>, 1-18.
  15. Norgaard, M. (2000a). <em>Neural network for modeling and control of dynamic systems</em>. Springer-Verlag.
  16. Norgaard, M. (2000b). <em>Neural network based control system design toolkit, ver. 2, for use with Matlab</em> (Technical Report No. 00-E-892). Department of Automation, Technical University of Denmark.
  17. Olawumi, M. A., &amp; Oladapo, B. I. (2025). AI-driven predictive models for sustainability. <em>Journal of Environmental Management, 373, </em>123472.
  18. Pislaru, M., Herghiligiu, I. V., &amp; Robu, I. B. (2019). Corporate sustainable performance assessment based on fuzzy logic. <em>Journal of Cleaner Production, 223</em>, 998-1013.
  19. Pooladzandi, O., &amp; Zhou, Y. (2022). Improving Levenberg-Marquardt algorithm for neural networks. arXiv preprint arXiv:2212.08769.
  20. Raza, H., Khan, M. A., Mazliham, M. S., Alam, M. M., Aman, N., &amp; Abbas, K. (2022). Applying artificial intelligence techniques for predicting the environment, social, and governance (ESG) pillar score based on balance sheet and income statement data: A case of non-financial companies of USA, UK, and Germany. <em>Frontiers in Environmental Science, 10</em>, 975487.
  21. Saad, M. H., Nazzal, M. A., &amp; Darras, B. M. (2023). A comprehensive rating tool for sustainability assessment of manufacturing organizations: A step towards sustainable manufacturing. <em>International Journal of Precision Engineering and Manufacturing-Green Technology, 10</em>, 835-850.
  22. Sala, S. (2020). Chapter 3 - Triple bottom line, sustainability and sustainability assessment, an overview. In Ren J., Scipioni A., Manzardo A., Liang H. (Eds.), <em>Biofuels for a more sustainable future: Life cycle sustainability assessment and multi-criteria decision making</em>. (pp. 47-72). Elsevier.
  23. Sarfraz, M., Ivascu, L., Artene, A. E., Bobitan, N., Dumitrescu, D., Bogdan, O., &amp; Burca, V. (2022). The relationship between firms’ financial performance and performance measures of circular economy sustainability: An investigation of the G7 countries. <em>Economic Research-Ekonomska Istraživanja</em>, <em>36</em>(1), 1-28.
  24. Taucean, I. M., Ivascu, L., Miclea, S., &amp; Negrut, M. (2019). Synergies between lean and sustainability: A literature review of concepts and tools. <em>Quality-Access to Success, 20</em>(Suppl. 1), 559-564.
  25. United Nations. (2012). <em>Resilient people, resilient planet: A future worth choosing</em>. United Nations Secretary-General’s High-level Panel on Global Sustainability. United Nations.
  26. Vilcu, A., Verzea, I., &amp; Herghiligiu, I. V. (2018a). New method to optimize the production functions in the system of safety in operation management. <em>Procedia - Social and Behavioral Sciences, 238</em>, 424-431.
  27. Vilcu, A., Verzea, I., Herghiligiu, I. V., &amp; Pislaru, M. (2018b). Statistic correlation algorithm for reliability in operation: Case study for a textile process. <em>Proceedings of the 14th International Scientific Conference Elearning and Software for Education: Elearning Challenges and New Horizons, 3</em>, 214-221.
  28. Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S. D., Tegmark, M., &amp; Fuso Nerini, F. (2019). The role of artificial intelligence in achieving the Sustainable Development Goals. <em>Nature Communications, 11</em>, 233.
  29. Vlontzos, G., &amp; Pardalos, P. M. (2017). Assess and prognosticate greenhouse gas emissions from agricultural production of EU countries, by implementing DEA Window analysis and artificial neural networks. <em>Renewable and Sustainable Energy Reviews, 76</em>, 155-162.
  30. Zadmirzaei, M., Hasanzadeh, F., Susaeta, A., &amp; Gutiérrez, E. (2024). A novel integrated fuzzy DEA–artificial intelligence approach for assessing environmental efficiency and predicting CO<sub>2 </sub>emissions. <em>Soft Computing,</em> <em>28</em>, 565-591.
Language: English
Page range: 3523 - 3537
Published on: Jul 24, 2025
Published by: The Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Ionuţ Viorel Herghiligiu, Emil Constantin Loghin, Ștefana-Cătălina PohonȚu-Dragomir, Cătălin Ioan Budeanu, published by The Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.