Bańbura, M., & Modugno, M. (2010). Maximum likelihood estimation of factor models on datasets with arbitrary patterns of missing data. ECB Working Paper Series No. 1189. European Central Bank. http://ssrn.com/abstract_id=1598302
Cepni, O., Güney, I. E., & Swanson, N. R. (2019). Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes. International Journal of Forecasting, 35(2), 555–572. https://doi.org/10.1016/j.ijforecast.2018.10.008
Marcellino, M., & Sivec, V. (2021). Nowcasting GDP growth in a small open economy. National Institute Economic Review, 256, 127–161. https://doi.org/10.1017/nie.2021.13
Proietti, T., Tinti, C., & Tegami, C. (2021). Nowcasting GDP and its components in a data-rich environment: The merits of the indirect approach. International Journal of Forecasting, 37(4), 1376–1398. https://doi.org/10.1016/j.ijforecast.2021.04.003
Richardson, A., van Florenstein Mulder, T., & Vehbi, T. (2021). Nowcasting GDP using machine-learning algorithms: A real-time assessment. International Journal of Forecasting, 37(2), 941–948. https://doi.org/10.1016/j.ijforecast.2020.10.005
Stock, J. H., & Watson, M. W. (2016). Dynamic factor models, factor-augmented vector autoregressions, and structural vector autoregressions in macroeconomics. Handbook of Macroeconomics, 2, 415–525.
Tegami, C. T. (2021). Nowcasting GDP and its components in a data-rich environment: The merits of the indirect approach. International Journal of Forecasting, 37(4), 1376–1398. https://doi.org/10.1016/j.ijforecast.2021.04.003
Aastveit, K. A., Gerdrup, K. R., Jore, A. S., & Thorsrud, L. A. (2014). Nowcasting GDP in real time: A density combination approach. Journal of Business & Economic Statistics, 32(1), 48–68. https://doi.org/10.1080/07350015.2013.844155
Armeanu, D., Andrei, J. V., Lache, L., & Panait, M. (2017). A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run. PLOS ONE, 12(7), e0181379. https://doi.org/10.1371/journal.pone.0181379