Ekanayake, I., Meddage, D., & Rathnayake, U. (2022). A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP). Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e01059
Hartanto, A. D., Kholik, Y. N., & Pristyanto, Y. (2023). Stock Price Time Series Data Forecasting Using the Light Gradient Boosting Machine (LightGBM) Model. International Journal on Informatics Visualization, 4(7). doi:10.30630/joiv.7.4.01740
Jahan, F., Shifat, S. M., Anannya, F. Z., & Mostafa, S. &. (2024). Short Paper: Dementia Patient Health, Prescriptions ML Dataset: LightGBM Classification of XAI-based LIME and SHAP for Dementia Detection. International Conference on Networking, Systems, and Security, (pg. 197-202).
Magda, R., Bozsik, N., & Meyer, N. (2019). An Evaluation of Gross Inland Energy Consumption of Six Central European Countries. Journal of Eastern European and Central Asian Research, 2(6), 270-281.
Neagu, C., Bulearcă, M., Sima, C., & Mărgușa, D. (2015). A SWOT analysis of Romanian Extractive Industry and Re-Industrialization Requirements of This Industry. Procedia Economics and Finance(22), 287–295. doi: 10.1016/S2212-5671(15)00288-9
Odularu, G. O., & Okonkwo, C. (2009). Does energy consumption contribute to economic performance? Empirical evidence from Nigeria. Journal of Economics and International Finance, 1(2), 044-058.
Schmid, L., Roidl, M., Kirchheim, A., & Pauly, M. (2025). Comparing Statistical and Machine Learning Methods for Time Series Forecasting in Data-Driven Logistics—A Simulation Study. Entropy, 27(1), 25. https://doi.org/10.3390/e27010025