Have a personal or library account? Click to login

Time Series Forecasting with LightGBM under Data Scarcity: An Application to Romania’s Inland Gas Consumption

Open Access
|Jul 2025

References

  1. Amat Rodrigo, J., & Escobar Ortiz, J. (2023). skforecast. doi:10.5281/zenodo.8382788
  2. Ekanayake, I., Meddage, D., & Rathnayake, U. (2022). A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP). Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e01059
  3. Hartanto, A. D., Kholik, Y. N., & Pristyanto, Y. (2023). Stock Price Time Series Data Forecasting Using the Light Gradient Boosting Machine (LightGBM) Model. International Journal on Informatics Visualization, 4(7). doi:10.30630/joiv.7.4.01740
  4. Hyndman, R., & Athanasopoulos, G. (2021). Forecasting: principles and practice (ed. III).
  5. Jahan, F., Shifat, S. M., Anannya, F. Z., & Mostafa, S. &. (2024). Short Paper: Dementia Patient Health, Prescriptions ML Dataset: LightGBM Classification of XAI-based LIME and SHAP for Dementia Detection. International Conference on Networking, Systems, and Security, (pg. 197-202).
  6. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., . . . Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems(30).
  7. LightGBM, I. S. (2023). Tong Zhou. doi:10.48550/arXiv.2305.17201
  8. Magda, R., Bozsik, N., & Meyer, N. (2019). An Evaluation of Gross Inland Energy Consumption of Six Central European Countries. Journal of Eastern European and Central Asian Research, 2(6), 270-281.
  9. Neagu, C., Bulearcă, M., Sima, C., & Mărgușa, D. (2015). A SWOT analysis of Romanian Extractive Industry and Re-Industrialization Requirements of This Industry. Procedia Economics and Finance(22), 287–295. doi: 10.1016/S2212-5671(15)00288-9
  10. Odularu, G. O., & Okonkwo, C. (2009). Does energy consumption contribute to economic performance? Empirical evidence from Nigeria. Journal of Economics and International Finance, 1(2), 044-058.
  11. Schmid, L., Roidl, M., Kirchheim, A., & Pauly, M. (2025). Comparing Statistical and Machine Learning Methods for Time Series Forecasting in Data-Driven Logistics—A Simulation Study. Entropy, 27(1), 25. https://doi.org/10.3390/e27010025
Language: English
Page range: 1518 - 1531
Published on: Jul 24, 2025
Published by: Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Robert-Stefan Constantin, Adriana Anamaria Davidescu, Eduard Mihai Manta, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.