Batres-Estrada, G. (2015). Deep learning for multivariate financial time series. Retrieved from https://www.math.kth.se/matstat/seminarier/reports/M-exjobb15/150612a.pdf
Dominković, D. F., Bačeković, I., Pedersen, A. S., & Krajačić, G. (2018). The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition. Renewable and Sustainable Energy Reviews, 82, 1823–1838. https://doi.org/10.1016/j.rser.2017.06.117">https://doi.org/10.1016/j.rser.2017.06.117
Guevara, Z., Rodrigues, J. F. D., & Domingos, T. (2015). The ultimate input-output model. Retrieved from https://www.iioa.org/conferences/23rd/papers/files/2029_20150423041_TheultimateEIOmodel.pdf
Hong, J. H., Kim, J., Son, W., Shin, H., Kim, N., Lee, W. K., & Kim, J. (2019). Long-term energy strategy scenarios for South Korea: Transition to a sustainable energy system. Energy Policy, 127, 425–437. https://doi.org/10.1016/j.enpol.2018.11.055">https://doi.org/10.1016/j.enpol.2018.11.055
Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Sustainable energy transition for renewable and low-carbon grid electricity generation and supply. Frontiers in Energy Research, 9, 743114. https://doi.org/10.3389/fenrg.2021.743114">https://doi.org/10.3389/fenrg.2021.743114
Maithani, S., Jain, R., & Arora, M. (2007). An artificial neural network-based approach for modelling urban spatial growth. Institute of Town Planners India Journal, 4.
Nieto, J., Carpintero, Ó., Miguel, L. J., & de Blas, I. (2019). Macroeconomic modelling under energy constraints: Global low carbon transition scenarios. Energy Policy, 111090. https://doi.org/10.1016/j.enpol.2019.111090">https://doi.org/10.1016/j.enpol.2019.111090
Papke, L. E., & Wooldridge, J. M. (1996). Econometric methods for fractional response variables with an application to 401(k) plan participation rates. Journal of Applied Econometrics, 11, 619–632.
Peñaloza, A. K. A., Balbinot, A., & Leborgne, R. (2023). AI application for load forecasting: A comparison of classical and deep learning methodologies. In Monitoring and Control of Electrical Power Systems Using Machine Learning Techniques (pp. 263–287). Elsevier. https://doi.org/10.1016/B978-0-32-399904-5.00017-X">https://doi.org/10.1016/B978-0-32-399904-5.00017-X
Pisică, A., Davidescu, A. A., Agafiței, M. D., Bolboașă, M. B., & Gheorghe, M. (2024). Transition trajectory: VAR projections of Romania’s shift to renewable energy. Journal of Social and Economic Statistics, 13(1), 1–19.
Ponta, L., Raberto, M., Teglio, A., & Cincotti, S. (2018). An agent-based stock-flow consistent model of the sustainable transition in the energy sector. Ecological Economics, 145, 274–300. https://doi.org/10.1016/j.ecolecon.2017.08.02">https://doi.org/10.1016/j.ecolecon.2017.08.02
Radovanović, M., Filipović, S., & Andrejević Panić, A. (2021). Sustainable energy transition in Central Asia: Status and challenges. Energy, Sustainability and Society, 11, 49. https://doi.org/10.1186/s13705-021-00324-2">https://doi.org/10.1186/s13705-021-00324-2
Ramalho, E. A., Ramalho, J. J. S., & Murteira, J. M. R. (2011). Alternative estimating and testing empirical strategies for fractional regression models. Journal of Economic Surveys, 25(1), 19–68.
Solomon, B. D., & Krishna, K. (2011). The coming sustainable energy transition: History, strategies, and outlook. Energy Policy, 39(11), 7422–7431. https://doi.org/10.1016/j.enpol.2011.09.009">https://doi.org/10.1016/j.enpol.2011.09.009
Sgouridis, S., Griffiths, S., Kennedy, S., Khalid, A., & Zurita, N. (2013). A sustainable energy transition strategy for the United Arab Emirates: Evaluation of options using an Integrated Energy Model. Energy Strategy Reviews, 2(1), 8–18. https://doi.org/10.1016/j.esr.2013.03.002">https://doi.org/10.1016/j.esr.2013.03.002
Stecuła, K., Wolniak, R., & Grebski, W. W. (2023). AI-driven urban energy solutions—From individuals to society: A review. Energies, 16(7988). https://doi.org/10.3390/en16247988">https://doi.org/10.3390/en16247988
Tovar-Facio, J., Martín, M., & Ponce-Ortega, J. M. (2021). Sustainable energy transition: Modeling and optimisation. Current Opinion in Chemical Engineering, 31, 100661. https://doi.org/10.1016/j.coche.2020.100661">https://doi.org/10.1016/j.coche.2020.100661
Uhunamure, S. E., & Shale, K. (2021). A SWOT analysis approach for a sustainable transition to renewable energy in South Africa. Sustainability, 13(7), 3933. https://doi.org/10.3390/su13073933">https://doi.org/10.3390/su13073933
Vats, G., Sharma, D., & Sandu, S. (2021). A flexible input-output price model for assessment of a nexus perspective to energy, water, and food security policymaking. Renewable and Sustainable Energy Transition, 1, 100012. https://doi.org/10.1016/j.rset.2021.100012">https://doi.org/10.1016/j.rset.2021.100012
Wimmer, L., Kluge, J., Zenz, H., & Kimmich, C. (2023). Predicting structural changes of the energy sector in an input-output framework. Energy, 265, 126178. https://doi.org/10.1016/j.energy.2022.126178">https://doi.org/10.1016/j.energy.2022.126178
Wulff, J. N. (2015). Interpreting results from the multinomial logit model: Demonstrated by foreign market entry. Organisational Research Methods, 18, 300–325.
Zhang, J., Zhu, Y., Zhang, X., Ye, M., & Yang, J. (2018). Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas. Journal of Hydrology, 561, 918–929. https://doi.org/10.1016/j.jhydrol.2018.04.065">https://doi.org/10.1016/j.jhydrol.2018.04.065
Zhang, X., Li, Z., Ma, L., Chong, C., & Ni, W. (2019). Forecasting the energy embodied in construction services based on a combination of static and dynamic hybrid input-output models. Energies, 12(2), 300. https://doi.org/10.3390/en12020300">https://doi.org/10.3390/en12020300