American Institute of Certified Public Accountants. Committee on Terminology. (1953). Review and resume; Accounting Terminology Bulletins, no. 1. American Institute of Accountants. https://egrove.olemiss.edu/dl_aia/356
Bakker, A., & Gravemeijer, K. P. E. (2006). An Historical Phenomenology of Mean and Median. Educational Studies in Mathematics, 62(2), 149–168. https://doi.org/10.1007/s10649-006-7099-8
Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., & Zdeborová, L. (2019). Machine learning and the physical sciences. Reviews of Modern Physics, 91(4), 045002. https://doi.org/10.1103/RevModPhys.91.045002
Fistung, F. D., Popescu, T., & Sima, C. (2015). Interferences between Sustainable Mobility and Economic Development in Romania. Procedia Economics and Finance, 22, 36–44. https://doi.org/10.1016/S2212-5671(15)00224-5
Florescu, I., CRISTACHE, S., Apostu, S., & ROTARU, F. (2018). Modeling Elements in the Passenger Transport in Romania. Journal of Eastern Europe Research in Business and Economics, 2018, 1–16. https://doi.org/10.5171/2018.219618
Frayudha, A. D., & Agung, H. (2024). Power BI and SQL Server Dashboard Data for Monitor Transportation Presence Employees at PT PON Gresik. MATICS: Jurnal Ilmu Komputer Dan Teknologi Informasi (Journal of Computer Science and Information Technology), 16(1), Article 1. https://doi.org/10.18860/mat.v16i1.24149
Greenacre, M., Groenen, P. J. F., Hastie, T., D’Enza, A. I., Markos, A., & Tuzhilina, E. (2022). Principal component analysis. Nature Reviews Methods Primers, 2(1), 1–21. https://doi.org/10.1038/s43586-022-00184-w
Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised Learning. In T. Hastie, R. Tibshirani, & J. Friedman (Eds.), The Elements of Statistical Learning: Data Mining, Inference, and Prediction (pp. 485–585). Springer. https://doi.org/10.1007/978-0-387-84858-7_14
Hou, W., & Ji, Z. (2024). Comparing Large Language Models and Human Programmers for Generating Programming Code. Advanced Science, n/a(n/a), 2412279. https://doi.org/10.1002/advs.202412279
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
Livingston, E. H. (2004). The mean and standard deviation: What does it all mean? Journal of Surgical Research, 119(2), 117–123. https://doi.org/10.1016/j.jss.2004.02.008
Marin, G., & Olaru, M. (2015). Modal Strategic Decisions in Transport and their Role in Sustainable Development: An Example from Romania. Procedia Economics and Finance, 32, 657–664. https://doi.org/10.1016/S2212-5671(15)01446-X
Pauwels, K., Ambler, T., Clark, B. H., LaPointe, P., Reibstein, D., Skiera, B., Wierenga, B., & Wiesel, T. (2009). Dashboards as a Service: Why, What, How, and What Research Is Needed? Journal of Service Research, 12(2), 175–189. https://doi.org/10.1177/1094670509344213
Popescu, T., & Fistung, F. D. (2015). Freight Transports in Romania, between Desires and Achievements. Past, Present and Future. Procedia Economics and Finance, 22, 304–312. https://doi.org/10.1016/S2212-5671(15)00291-9
Reddy, C. S., Sangam, R. S., & Srinivasa Rao, B. (2019). A Survey on Business Intelligence Tools for Marketing, Financial, and Transportation Services. In S. C. Satapathy, V. Bhateja, & S. Das (Eds.), Smart Intelligent Computing and Applications (pp. 495–504). Springer. https://doi.org/10.1007/978-981-13-1927-3_53
Rothengatter, W. (2011). Economic Crisis and Consequences for the Transport Sector. In W. Rothengatter, Y. Hayashi, & W. Schade (Eds.), Transport Moving to Climate Intelligence: New Chances for Controlling Climate Impacts of Transport after the Economic Crisis (pp. 9–28). Springer. https://doi.org/10.1007/978-1-4419-7643-7_2
Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., Er, M. J., Ding, W., & Lin, C.-T. (2017). A review of clustering techniques and developments. Neurocomputing, 267, 664–681. https://doi.org/10.1016/j.neucom.2017.06.053
Xu, Y. (2024). A Study on the Application of Python in Corporate Financial Analysis. Frontiers in Business, Economics and Management, 15(2), Article 2. https://doi.org/10.54097/rpvnm638