Have a personal or library account? Click to login
Open Access
|Jul 2025

References

  1. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., ... & McGrew, B. (2023). Gpt-4 technical report. arXiv preprint arXiv:2303.08774.
  2. Alamsyah, A., Ayu, S. P., & Rikumahu, B. (2019, July). Exploring relationship between headline news sentiment and stock return. In 2019 7th International Conference on Information and Communication Technology (ICoICT) (pp. 1-6). IEEE.
  3. Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., ... & Wang, Y. (2024). Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815.
  4. Chen, T. L., & Chen, F. Y. (2016). An intelligent pattern recognition model for supporting investment decisions in stock market. Information Sciences, 346, 261-274.
  5. Chen, X., & Fang, Y. (2013). Enterprise systems in financial sector–an application in precious metal trading forecasting. Enterprise Information Systems, 7(4), 558-568.
  6. Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., ... & Ganapathy, R. (2024). The llama 3 herd of models. arXiv preprint arXiv:2407.21783.
  7. Garza, A., & Mergenthaler-Canseco, M. (2023). TimeGPT-1. arXiv preprint arXiv:2310.03589.
  8. Hossain, A., & Nasser, M. (2011). Comparison of the finite mixture of ARMA-GARCH, back propagation neural networks and support-vector machines in forecasting financial returns. Journal of Applied Statistics, 38(3), 533-551.
  9. Lara-Benítez, P., Carranza-García, M., & Riquelme, J. C. (2021). An experimental review on deep learning architectures for time series forecasting. International journal of neural systems, 31(03), 2130001.
  10. Li, X., Shen, X., Zeng, Y., Xing, X., & Xu, J. (2024, May). FinReport: Explainable Stock Earnings Forecasting via News Factor Analyzing Model. In Companion Proceedings of the ACM on Web Conference 2024 (pp. 319-327).
  11. Liao, W., Wang, S., Yang, D., Yang, Z., Fang, J., Rehtanz, C., & Porté-Agel, F. (2025). TimeGPT in load forecasting: A large time series model perspective. Applied Energy, 379, 124973.
  12. Lo, A. W., Mamaysky, H., & Wang, J. (2000). Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation. The journal of finance, 55(4), 1705-1765.
  13. M. Chang. (2018). How A.I. Traders Will Dominate Hedge Fund Industry. [Online]. Available: https://www.youtube.com/watch?v=lzaBbQKUtAA
  14. Torben Gustav Andersen, Richard A Davis, Jens-Peter Kreiu, and Thomas V Mikosch. 2009. Handbook of financial time series. Springer Science & Business Media.
  15. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., ... & Scialom, T. (2023). Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288.
  16. Velay, M., & Daniel, F. (2018). Stock chart pattern recognition with deep learning. arXiv preprint arXiv:1808.00418.
  17. Xu, Y., Liang, C., Li, Y., & Huynh, T. L. (2022). News sentiment and stock return: Evidence from managers’ news coverages. Finance Research Letters, 48, 102959.
  18. Yang, H., Liu, X. Y., & Wang, C. D. (2023). Fingpt: Open-source financial large language models. arXiv preprint arXiv:2306.06031.
  19. Yang, Y., Tang, Y., & Tam, K. Y. (2023). Investlm: A large language model for investment using financial domain instruction tuning. arXiv preprint arXiv:2309.13064.
  20. Yu, H., Nartea, G. V., Gan, C., & Yao, L. J. (2013). Predictive ability and profitability of simple technical trading rules: Recent evidence from Southeast Asian stock markets. International Review of Economics & Finance, 25, 356-371.
  21. Zeng, S., Yu, Y., & Li, W. (2023). Prediction and evaluation of the energy structure under the green finance development in Chongqing municipality, China. Heliyon, 9(12).
Language: English
Page range: 529 - 540
Published on: Jul 24, 2025
Published by: Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Rahul Tak, Daniel Traian Pele, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.