Have a personal or library account? Click to login

Cryptocurrencies in a Changing Financial Landscape: A Systematic Review

Open Access
|Jul 2025

References

  1. Ankenbrand, T. and D. Bieri (2018). Assessment of cryptocurrencies as an asset class by their characteristics. Investment management and financial innovations (15, Iss. 3), 169–181.
  2. Biais, B., C. Bisiere, M. Bouvard, C. Casamatta, and A. J. Menkveld (2023). Equilibrium bitcoin pricing. The Journal of Finance 78, 967–1014. https://onlinelibrary.wiley.com/doi/abs/10.1111/jofi.13206.
  3. Briola, A., D. Vidal-Tomás, Y. Wang, and T. Aste (2023). Anatomy of a stablecoin’s failure: The terra-luna case. Finance Research Letters 51, 103358. https://www.sciencedirect.com/science/article/abs/pii/S1544612322005359.
  4. Chokor, A. and E. Alfieri (2021). Long and short-term impacts of regulation in the cryptocurrency market. The Quarterly Review of Economics and Finance 81, 157–173.
  5. Corbet, S., J. W. Goodell, S. Gunay, and K. Kaskaloglu (2023). Are defi tokens a separate asset class from conventional cryptocurrencies? The Journal of Finance 322, 609–630. https://link.springer.com/article/10.1007/s10479-022-05150-z.
  6. Enoksen, F. A., C. J. Landsnes, K. Lučivjanská, and P. Molnár (2020). Understanding risk of bubbles in cryptocurrencies. Journal of Economic Behavior & Organization 176, 129–144.
  7. Frediani, M. E. A. (2024). Crafting the future of finance: A comparative analysis of cryptocurrency regulation in the global economy. Journal of Financial Risk Management 13(1), 193–206.
  8. Grobys, K. and J. Junttila (2021). Speculation and lottery-like demand in cryptocurrency markets. Journal of International Financial Markets, Institutions & Money 71, 101289. https://www.sciencedirect.com/science/article/pii/S1042443121000081?via%3Dihub.
  9. Guarino, A., L. Grilli, D. Santoro, F. Messina, and R. Zaccagnino (2022). To learn or not to learn? evaluating autonomous, adaptive, automated traders in cryptocurrencies financial bubbles. Neural Computing and Applications 34, 20715–20756. https://link.springer.com/article/10.1007/s00521-022-07543-4.
  10. Haykir, O. and I. Yagli (2022). Speculative bubbles and herding in cryptocurrencies. Financial innovation 8(1), 78.
  11. Ji, Q., D. Zhang, and Y. Zhao (2020). Searching for safe-haven assets during the covid-19 pandemic. International Review of Financial Analysis 71, 101526. https://www.sciencedirect.com/science/article/pii/S1057521920301708?via%3Dihub.
  12. Kim, A., S. Trimborn, and W. K. Härdle (2021). Vcrix—a volatility index for cryptocurrencies. International Review of Financial Analysis 78, 101915.
  13. Kukacka, J. and L. Kristoufek (2023). Fundamental and speculative components of the cryptocurrency pricing dynamics. Financial Innovation 9, 24. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4133394.
  14. Liu, Y. and A. Tsyvinski (2021). Risks and returns of cryptocurrency. The Review of Financial Studies 34, 2689–2727. https://academic.oup.com/rfs/article-abstract/34/6/2689/5912024?redirectedFrom=fulltext.
  15. Makarov, I. and A. Schoar (2020). Trading and arbitrage in cryptocurrency markets. Journal of Financial Economics 135, 293–319. https://www.sciencedirect.com/science/article/abs/pii/S0304405X19301746.
  16. Mensi, W., K. H. Al-Yahyaee, and S. H. Kang. 2019. “Structural Breaks and Double Long Memory of Cryptocurrency Prices: A Comparative Analysis From Bitcoin and Ethereum.” Finance Research Letters 29: 222–230. ISSN 15446123. doi:10.1016/j.frl.2018.07.011
  17. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Satoshi Nakamoto.
  18. Ni, X., W. K. Härdle, and T. Xie (2020). A machine learning based regulatory risk index for cryptocurrencies. arXiv preprint arXiv:2009.12121.
  19. Poskart, R. (2022). The emergence and development of the cryptocurrency as a sign of global financial markets financialisation. Central European Review of Economics & Finance 36(1), 53–66.
  20. Shah, A., Y. Chauhan, and B. Chaudhury (2021). Principal component analysis based construction and evaluation of cryptocurrency index. Expert systems with applications 163, 113796.
  21. Shu, M. and W. Zhu (2020). Real-time prediction of bitcoin bubble crashes. Physica A: Statistical Mechanics and its Applications 548, 124477. https://www.sciencedirect.com/science/article/abs/pii/S0378437120302077.
  22. Trimborn, S. and W. K. Härdle (2018). Crix an index for cryptocurrencies. Journal of Empirical Finance 49, 107–122.
  23. Ullah, M., K. Sohag, and H. Haddad (2024). Comparative investment analysis between crypto and conventional financial assets amid heightened geopolitical risk. Heliyon 10(9).
  24. Wang, S. and J.-P. Vergne (2017). Buzz factor or innovation potential: What explains cryptocurrencies’ returns? PloS one 12(1), e0169556.
  25. Watoreka, M., S. Drozdza, J. Kwapiena, L. Minatia, P. Oswiecimka, and M. Stanuszek (2021). Multiscale characteristics of the emerging global cryptocurrency market. Physics Reports 901, 1–82. https://www.sciencedirect.com/science/article/abs/pii/S0370157320304166.
  26. Wheatley, S., D. Sornette, T. Huber, M. Reppen, and R. N. Gantner (2019). Are bitcoin bubbles predictable? combining a generalized metcalfe’s law and the log-periodic power law singularity model. Royal Society open science 6(6), 180538.
  27. Zetzsche, D. A., D. W. Arner, and R. P. Buckley (2020). Decentralized finance. Journal of Financial Regulation 6(2), 172–203.
  28. ZUO, X., Y.-T. CHEN, and W. K. Härdle (2024). Emoji-driven sentiments in cryptocurrency markets: Integrating visual and textual contexts. Available at SSRN.
Language: English
Page range: 514 - 528
Published on: Jul 24, 2025
Published by: Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Siang-Li Jheng, Alexandra Conda, Daniel Traian Pele, Wolfgang Karl Härdle, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.