Have a personal or library account? Click to login
From Insights to Trust: A Review of AI-Driven Business Analytics Literature Cover

From Insights to Trust: A Review of AI-Driven Business Analytics Literature

Open Access
|Jul 2025

References

  1. Adama, H.E., Popoola, O.A., Okeke, C.D., Akinoso, A.E.: Theoretical framework supporting it and business strategy alignment for sustained competitive advantage. International Journal of Management & Entrepreneurship Research 6(4), 1273-1287 (2024).
  2. Alduweib, E., Arqoub, M. A., & Alromema, W. (2024, February). Automated Machine Learning for Information Management and Information Systems: An Overview. In 2024 2nd International Conference on Cyber Resilience (ICCR) (pp. 1-5). IEEE.
  3. Alghamdi, N.A., Al-Baity, H.H.: Augmented analytics driven by ai: A digital transformation beyond business intelligence. Sensors 22(20), 8071 (2022)
  4. Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M., Confalonieri, R., ... & Herrera, F. (2023). Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Information fusion, 99, 101805.
  5. Alqhatani, A., Ashraf, M.S., Ferzund, J., Shaf, A., Abosaq, H.A., Rahman, S., Irfan, M., Alqhtani, S.M.: 360 retail business analytics by adopting hybrid machine learning and a business intelligence approach. Sustainability 14(19), 11942 (2022)
  6. Amin, D. M., & Rai, M. (2020). A Novel Framework for Enhancing QoS of Big Data. International Journal of Advanced Computer Science and Applications, 11(4).
  7. Amirineni, S. (2024). Enhancing Predictive Analytics in Business Intelligence through Explainable AI: A Case Study in Financial Products. Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023.
  8. Anand, T., & Mitchell, D. (2022). Objectives and curriculum for a graduate business analytics capstone: Reflections from practice. Decision Sciences Journal of Innovative Education, 20(4), 235-245.
  9. Arias-Pérez, J., Chacón-Henao, J., & López-Zapata, E. (2023). Unlocking agility: Trapped in the antagonism between co-innovation in digital platforms, business analytics capability and external pressure for AI adoption? Business Process Management Journal, 29(6), 1791-1809.
  10. Baabdullah, A. M. (2024). The precursors of AI adoption in business: Towards an efficient decision-making and functional performance. International Journal of Information Management, 75, 102745.
  11. Badmus, O., Rajput, S. A., Arogundade, J. B., & Williams, M. (2024). AI-driven business analytics and decision making. World Journal of Advanced Research and Reviews, 24(1), 616-633.
  12. Beinabadi, H. Z., Baradaran, V., & Komijan, A. R. (2024). Sustainable supply chain decision-making in the automotive industry: A data-driven approach. Socio-Economic Planning Sciences, 95, 101908.
  13. Bender, T. (2024). Towards a process selection method for embedded analytics. Information Systems and e-Business Management, 1-25.
  14. Biswas, B., & Sanyal, M. K. (2019, January). Soft intelligence approaches for selecting products in online market. In 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 432-437). IEEE.
  15. Brink, A., Benyayer, L. D., & Kupp, M. (2024). Decision-making in organizations: should managers use AI? Journal of Business Strategy, 45(4), 267-274.
  16. Borges, A. F., Laurindo, F. J., Spínola, M. M., Gonçalves, R. F., & Mattos, C. A. (2021). The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions. International journal of information management, 57, 102225.
  17. Borsatto, J. M. L. S., Marcolin, C. B., Abdalla, E. C., & Amaral, F. D. (2024). Aligning community outreach initiatives with SDGs in a higher education institution with artificial intelligence. Cleaner and Responsible Consumption, 12, 100160.
  18. Chander, B., John, C., Warrier, L., & Gopalakrishnan, K. (2024). Toward trustworthy artificial intelligence (TAI) in the context of explainability and robustness. ACM Computing Surveys.
  19. Chatterjee, S., Chaudhuri, R., & Vrontis, D. (2024). Does data-driven culture impact innovation and performance of a firm? An empirical examination. Annals of Operations Research, 333(2), 601-626.
  20. Chaudhuri, R., Chatterjee, S., Vrontis, D., & Thrassou, A. (2024). Adoption of robust business analytics for product innovation and organizational performance: the mediating role of organizational data-driven culture. Annals of Operations Research, 339(3), 1757-1791.
  21. Chen, Y., Rui, H., & Whinston, A. B. (2024). Conversation Analytics: Can Machines Read between the Lines in Real-Time Strategic Conversations? Information Systems Research.
  22. Chen, X., & Siau, K. (2020). Business analytics/business intelligence and IT infrastructure: impact on organizational agility. Journal of Organizational and End User Computing (JOEUC), 32(4), 138-161.
  23. Costa, E. (2024). Industry 5.0 and SDG 9: a symbiotic dance towards sustainable transformation. Sustainable Earth Reviews, 7(1), 4.
  24. Colosimo, B. M., & Centofanti, F. (2022). Model interpretability, explainability and trust for manufacturing 4.0. In Interpretability for Industry 4.0: Statistical and Machine Learning Approaches (pp. 21-36). Cham: Springer International Publishing.
  25. East, A., & Chastain, K. (2024). Automated Machine Learning: Revolutionizing Data Science and Decision-Making. Innovative Computer Sciences Journal, 10(1), 1-9.
  26. European Commission Artificial Intelligence Act (2022). https://artificialintelligenceact.eu.
  27. Farooqi, N. S., & Khozium, M. O. (2022). Implementation of Artificial Intelligence Based Analyzer Using Multi-Agent System Approach. Intelligent Automation & Soft Computing, 31(1).
  28. Giermindl, L. M., Strich, F., Christ, O., Leicht-Deobald, U., & Redzepi, A. (2022). The dark sides of people analytics: reviewing the perils for organizations and employees. European Journal of Information Systems, 31(3), 410-435.
  29. Giudici, P., Centurelli, M., & Turchetta, S. (2024). Artificial Intelligence risk measurement. Expert Systems with Applications, 235, 121220.
  30. Gómez-Caicedo, M. I., Gaitán-Angulo, M., Bacca-Acosta, J., Briñez Torres, C. Y., & Cubillos Díaz, J. (2022). Business analytics approach to artificial intelligence. Frontiers in Artificial Intelligence, 5, 974180.
  31. González-Carrasco, I., Jiménez-Márquez, J. L., López-Cuadrado, J. L., & Ruiz-Mezcua, B. (2019). Automatic detection of relationships between banking operations using machine learning. Information Sciences, 485, 319-346.
  32. Groenewald, C. A., Groenewald, E., Uy, F., Kilag, O. K., Rabillas, A., & Cabuenas, M. H. (2024). Organizational Agility: The Role of Information Technology and Contextual Moderators-A Systematic Review. International Multidisciplinary Journal of Research for Innovation, Sustainability, and Excellence (IMJRISE), 1(3), 32-38.
  33. Gubela, R. M., Lessmann, S., & Stöcker, B. (2024). Multiple treatment modeling for Target Marketing campaigns: A large-scale Benchmark Study. Information Systems Frontiers, 26(3), 875-898.
  34. Hasan, M. R., Gazi, M. S., & Gurung, N. (2024). Explainable AI in Credit Card Fraud Detection: Interpretable Models and Transparent Decision-making for Enhanced Trust and Compliance in the USA. Journal of Computer Science and Technology Studies, 6(2), 01-12.
  35. Hayajneh, J. A. M., Elayan, M. B. H., Abdellatif, M. A. M., & Abubakar, A. M. (2022). Impact of business analytics and π-shaped skills on innovative performance: Findings from PLS-SEM and fsQCA. Technology in Society, 68, 101914.
  36. Hoang, T. G., & Bui, M. L. (2023). Business intelligence and analytic (BIA) stage-of-practice in micro-, small-and medium-sized enterprises (MSMEs). Journal of Enterprise Information Management, 36(4), 1080-1104.
  37. Jabeur, S. B., Stef, N., & Arfi, W. B. (2024). Artificial intelligence for innovation: a bibliometric analysis and structural variation approach. International Journal of Innovation Management, 28(05n06), 2450020.
  38. Javed Awan, M., Mohd Rahim, M. S., Nobanee, H., Munawar, A., Yasin, A., & Zain, A. M. (2021). Social media and stock market prediction: a big data approach. MJ Awan, M. Shafry, H. Nobanee, A. Munawar, A. Yasin et al.,” Social media and stock market prediction: a big data approach,” Computers, Materials & Continua, 67(2), 2569-2583.
  39. Kaggwa, S., Eleogu, T. F., Okonkwo, F., Farayola, O. A., Uwaoma, P. U., & Akinoso, A. (2024). AI in decision making transforming business strategies. International Journal of Research and Scientific Innovation, 10(12), 423-444
  40. Karpa, M., Kitsak, T., Domsha, O., Zhuk, O., Акімова, Л., & Akimov, O. (2023). Artificial intelligence as a tool of public management of socio-economic development: Economic systems, smart infrastructure, digital systems of business analytics and transfers.AD ALTA: Journal of Interdisciplinary Research, 13(1),13–20. https://doi.org/10.33543/1301341320
  41. Kaur, R., Singh, R., Gehlot, A., Priyadarshi, N., & Twala, B. (2022). Marketing strategies 4.0: Recent trends and technologies in marketing. Sustainability, 14(24), 16356.
  42. Kharat, R., Mathur, A.: Bridging the trust gap in machine learning automation: Enhancing end-user confidence through generative ai-driven explanations in natural language. In: Workshop on e-Business. pp. 126–138. Springer (2023)
  43. Kulkov, I., Kulkova, J., Rohrbeck, R., Menvielle, L., Kaartemo, V., & Makkonen, H. (2024). Artificial intelligence‐driven sustainable development: Examining organizational, technical, and processing approaches to achieving global goals. Sustainable Development, 32(3), 2253-2267.
  44. Liu, S., Liu, O., & Chen, J. (2023). A review on business analytics: definitions, techniques, applications and challenges. Mathematics, 11(4), 899.
  45. Neiroukh, S., Aljuhmani, H. Y., & Alnajdawi, S. (2024, January). In the era of emerging technologies: discovering the impact of artificial intelligence capabilities on timely decision-making and business performance. In 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS) (pp. 1-6). IEEE.
  46. Niederman, F. (2021). Project management: openings for disruption from AI and advanced analytics. Information Technology & People, 34(6), 1570-1599.
  47. Odejide, O. A., & Edunjobi, T. E. (2024). AI in project management: exploring theoretical models for decision-making and risk management. Engineering Science & Technology Journal, 5(3), 1072-1085.
  48. Olateju, O., Okon, S. U., Olaniyi, O. O., Samuel-Okon, A. D., & Asonze, C. U. (2024). Exploring the concept of explainable AI and developing information governance standards for enhancing trust and transparency in handling customer data. Available at SSRN.
  49. Osasona, F., Amoo, O. O., Atadoga, A., Abrahams, T. O., Farayola, O. A., & Ayinla, B. S. (2024). Reviewing the ethical implications of AI in decision making processes. International Journal of Management & Entrepreneurship Research, 6(2), 322-335.
  50. Paramesha, M., Rane, N. L., & Rane, J. (2024). Big data analytics, artificial intelligence, machine learning, internet of things, and blockchain for enhanced business intelligence. Partners Universal Multidisciplinary Research Journal, 1(2), 110-133.
  51. Park, M. S., Son, H., Hyun, C., & Hwang, H. J. (2021). Explainability of machine learning models for bankruptcy prediction. Ieee Access, 9, 124887-124899.
  52. Power, D. J., Heavin, C., McDermott, J., & Daly, M. (2018). Defining business analytics: an empirical approach. Journal of Business Analytics, 1(1), 40-53.
  53. Rabia, M.A.B., Bellabdaoui, A.: A comparative analysis of predictive analytics tools with integrated what-if modules for transport industry. In: 2022 14th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA).pp. 1–6. IEEE (2022)
  54. Raghupathi, W., & Raghupathi, V. (2021). Contemporary business analytics: An overview. Data, 6(8), 86.
  55. Rana, N. P., Chatterjee, S., Dwivedi, Y. K., & Akter, S. (2022). Understanding dark side of artificial intelligence (AI) integrated business analytics: assessing firm’s operational inefficiency and competitiveness. European Journal of Information Systems, 31(3), 364-387.
  56. Ratia, M., Myllärniemi, J., & Helander, N. (2019). The potential beyond IC 4.0: the evolution of business intelligence towards advanced business analytics. Measuring Business Excellence, 23(4), 396-410.
  57. Salehin, I., Islam, M. S., Saha, P., Noman, S. M., Tuni, A., Hasan, M. M., & Baten, M. A. (2024). AutoML: A systematic review on automated machine learning with neural architecture search. Journal of Information and Intelligence, 2(1), 52-81.
  58. Salvetti, F., Bertagni, B., Negri, F., Bersanelli, M., Usai, R., Milani, A., & De Rosa, D. (2022). At Your Best! Artificial Intelligence, People and Business Analytics, Highly Realistic Avatars, Innovative Learning and Development. In Innovations in Learning and Technology for the Workplace and Higher Education: Proceedings of ‘The Learning Ideas Conference’2021 (pp. 280-289). Springer International Publishing.
  59. Sajid, S., Arachchige, J. J., Bukhsh, F. A., Abhishta, A., & Ahmed, F. (2025). Building Trust in Predictive Analytics: A Review of ML Explainability and Interpretability. International Journal of Computing Sciences Research, 9, 3364-3391.
  60. Schmitt, M.: Automated machine learning: Ai-driven decision making in business analytics. Intelligent Systems with Applications 18, 200188 (2023)
  61. Soundararajan, R., & Shenbagaraman, V. M. (2024). Enhancing financial decision-making through explainable AI and Blockchain integration: improving transparency and trust in predictive models. Educational Administration: Theory and Practice, 30(4), 9341-9351.
  62. Stradowski, S., & Madeyski, L. (2024). Interpretability/Explainability Applied to Machine Learning Software Defect Prediction: An Industrial Perspective. IEEE Software.
  63. Sun, Z., & Huo, Y. (2019, January). A managerial framework for intelligent big data analytics. In Proceedings of the 2nd International Conference on Software Engineering and Information Management (pp. 152-156).
  64. Sundaram, A., Abdel-Khalik, H. S., & Abdo, M. G. (2023). Preventing Reverse Engineering of Critical Industrial Data with DIOD. Nuclear Technology, 209(1), 37-52.
  65. Thakral, P., Srivastava, P. R., Dash, S. S., Jasimuddin, S. M., & Zhang, Z. (2023). Trends in the thematic landscape of HR analytics research: a structural topic modeling approach. Management Decision, 61(12), 3665-3690.
  66. Tiwari, R.: Explainable ai (xai) and its applications in building trust and understanding in ai decision making. International J. Sci. Res. Eng. Manag 7, 1–13 (2023)
  67. Vereschak, O., Bailly, G., & Caramiaux, B. (2021). How to evaluate trust in AI-assisted decision making? A survey of empirical methodologies. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1-39.
  68. Wisniewski, H. S. (2020). What is Business with AI? Preparing Future Decision Makers and Leaders. Technology & Innovation, 21(4), 1-14.
  69. Wissuchek, C., Zschech, P.: Prescriptive analytics systems revised: systematic literature review from an information systems perspective. Information Systems and e-Business Management pp. 1–75 (2024)
  70. Zeebaree, M., Ismael, G. Y., Nakshabandi, O. A., Saleh, S. S., & Aqel, M. (2020). Impact of innovation technology in enhancing organizational management. Studies of Applied Economics, 38(4).
  71. Žigienė, G., Rybakovas, E., Vaitkienė, R., & Gaidelys, V. (2022). Setting the grounds for the transition from business analytics to artificial intelligence in solving supply chain risk. Sustainability, 14(19), 11827.
Language: English
Page range: 184 - 200
Published on: Jul 24, 2025
Published by: Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Alina Cornelia Luchian, Vasile Alecsandru Strat, Ovidiu Jianu, Monica Dragoicea, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.