Have a personal or library account? Click to login
Standardization of Regression Equation Parameters in the Case of Multiple Linear Regression for an Econometric Model Development to Determine the Price of Apartments Cover

Standardization of Regression Equation Parameters in the Case of Multiple Linear Regression for an Econometric Model Development to Determine the Price of Apartments

Open Access
|Jul 2024

References

  1. Aliyev, K., Amiraslanova, M., Bakirova, N., & Eynizada, N. (2019). Determinants of housing prices in Baku: empirical analyses. International Journal of Housing Markets and Analysis, 12(2), 281-297.
  2. Bourassa, S., Cantoni, E., & Hoesli, M. (2010). Predicting house prices with spatial dependence: a comparison of alternative methods. Journal of Real Estate Research, 32(2), 139-160.
  3. Choong, W. C. (2018). Statistical Analysis Of Housing Prices In Petaling District Using Linear Functional Model (Doctoral dissertation, UTAR).
  4. Cuc, L. D., Rad, D., Manațe, D., Szentesi, S. G., Dicu, A., Pantea, M. F., ... & Bâtcă-Dumitru, G. C. (2023). Representations of the Smart Green Concept and the Intention to Implement IoT in Romanian Real Estate Development. Sustainability, 15(10), 7777.
  5. Ding, X. (2022). Macroeconomic Factors Affecting Housing Prices: Take the United States as an Example. In 2022 7th International Conference on Financial Innovation and Economic Development (ICFIED 2022) (pp. 2335-2339). Atlantis Press.
  6. Ebekozien, A., Abdul-Aziz, A. R., & Jaafar, M. (2019). Housing finance inaccessibility for low-income earners in Malaysia: Factors and solutions. Habitat International, 87, 27-35.
  7. Hong, T., Koo, C., Kim, D., Lee, M., & Kim, J. (2015). An estimation methodology for the dynamic operational rating of a new residential building using the advanced case-based reasoning and stochastic approaches. Applied Energy, 150, 308-322.
  8. Hoxha, V., Hoxha, D., & Hoxha, J. (2022). Study of factors influencing apartment prices in Prishtina, Kosovo. International Journal of Housing Markets and Analysis, 15(5), 1242-1258.
  9. Jafari, A., & Akhavian, R. (2019). Driving forces for the US residential housing price: a predictive analysis. Built Environment Project and Asset Management, 9(4), 515-529.
  10. Jim, C. Y., & Chen, W. Y. (2006). Impacts of urban environmental elements on residential housing prices in Guangzhou (China). Landscape and urban planning, 78(4), 422-434.
  11. Kim, J., Lee, Y., Lee, M. H., & Hong, S. Y. (2022). A comparative study of machine learning and spatial interpolation methods for predicting house prices. Sustainability, 14(15), 9056.
  12. Li, L., & Chu, K. H. (2017). Prediction of real estate price variation based on economic parameters. In 2017 International Conference on Applied System Innovation (ICASI) (pp. 87-90). IEEE.
  13. Lu, S., Li, Z., Qin, Z., Yang, X., & Goh, R. S. M. (2017). A hybrid regression technique for house prices prediction. In 2017 IEEE international conference on industrial engineering and engineering management (IEEM) (pp. 319-323). IEEE.
  14. Manate, D., Lile, R., Rad, D., Szentesi, S. G., & Cuc, L. D. (2023). An analysis of the concept of green buildings in Romania in the context of the energy paradigm change in the EU. Transformations in Business & Economics, 22(1).
  15. Rutskiy, V., García, D. S., Denisova, E., Alina, F., Okashev, N., Devederkin, I., Bystrova, N., Elisseva, E., & Tsarev, R. (2023). Modeling the Well-Being of the Population and Its Factors Using the Well-Being Index. In Computer Science On-line Conference (pp. 605-614). Cham: Springer International Publishing.
  16. Ryan, S. (1999). Property values and transportation facilities: Finding the transportation-land use connection. Journal of planning literature, 13(4), 412-427.
  17. Sharma, A., & Poongodi, T. (2023). Prediction of Real-Time Estate Pricing using Train-Test Splitting Techniques. In 2023 4th International Conference on Intelligent Engineering and Management (ICIEM) (pp. 1-6). IEEE.
  18. Sundrani, D. M. (2018). Factors influencing home-purchase decision of buyers of different types of apartments in India. International Journal of Housing Markets and Analysis, 11(4), 609-631.
  19. Wang, P. Y., Chen, C. T., Su, J. W., Wang, T. Y., & Huang, S. H. (2021). Deep learning model for house price prediction using heterogeneous data analysis along with joint self-attention mechanism. IEEE Access, 9, 55244-55259.
  20. Wooldridge, J. M. (2009). Introductory econometrics: A modern approach. Mason, OH: South Western, Cengage Learning. Speziell S. 271-276.
  21. World Green Building Council (2014). Health, wellbeing & productivity in offices. Retrieved from:https://worldgbc.org/wpcontent/uploads/2022/03/compressed_WorldGBC_Health_Wellbeing__Productivity_Full_Report_Dbl_Med_Res_Feb_2015-1.pdf
  22. Yazdani, M. (2021). Machine learning, deep learning, and hedonic methods for real estate price prediction. arXiv preprint arXiv:2110.07151.
Language: English
Page range: 2344 - 2352
Published on: Jul 3, 2024
Published by: The Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Silviu Gabriel Szentesi, Mioara Florina Pantea, Vanina Adoriana Trifan, Luminița Ioana Mazuru, Noemi Florina Gabriela Szentesi, published by The Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution 4.0 License.