Have a personal or library account? Click to login

Exploring the Climate Change-AI Nexus: A Bibliometric and Scientometric Study1

Open Access
|Jul 2024

References

  1. Adebiyi-Abiola, B.., Assefa, S., Sheikh, K., García, J. M. (2019). Cleaning up plastic pollution in Africa. Science 365 (6459), 1249–1251. doi: 10.1126/science.aax3539
  2. Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. (2021). Artificial Intelligence in sustainable energy industry: Status quo, challenges and opportunities. Journal of Cleaner Production. https://www.sciencedirect.com/science/article/pii/S0959652621000548
  3. Akter, S., Wamba, S. F., Mariani, M., & Hani, U. (2021). How to Build an AI Climate-Driven Service Analytics Capability for Innovation and Performance in Industrial Markets? Industrial Marketing Management, 97, 258–273.
  4. Ameer, S. & Alkhafaji, M., & Jaffer, Z., Al-Farouni, M. (2024). Empowering Farmers with IoT, UAVs, and Deep Learning in Smart Agriculture. E3S Web of Conferences. 491. 10.1051/e3sconf/202449104007.
  5. Ang, T.Z., Salem, M., Kamarol, M., Das, H., Puia, A., Natarajan, P. (2022). A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strategy Reviews. 43. 100939. 10.1016/j.esr.2022.100939.
  6. Arrieta, B., Alejandro, N.-R., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115.
  7. Bracarense, N., Bawack, R.E., Fosso Wamba, S., Carillo, K.D.A. (2022). Artificial Intelligence and Sustainability: A Bibliometric Analysis and Future Research Directions. Pacific Asia Journal of the Association for Information Systems: Vol. 14: Iss. 2, Article 9. DOI: 10.17705/1pais.14209
  8. Chaterji, S., DeLay, N.D., Evans, J.V., Mosier, N., Engel, B.A., Buckmaster, D.R., & Chandra, R. (2020). Artificial Intelligence for Digital Agriculture at Scale: Techniques, Policies, and Challenges. ArXiv, abs/2001.09786.
  9. Chen, P.; Gao, J.; Ji, Z.; Liang, H.; Peng, Y. (2022) Do Artificial Intelligence Applications Affect Carbon Emission Performance?—Evidence from Panel Data Analysis of Chinese Cities. Energies, 15, 5730. https://doi.org/10.3390/en15155730
  10. Chen, L., Chen, Z., Zhang, Y. et al (2023). Artificial intelligence-based solutions for climate change: a review. Environ Chem Lett 21, 2525–2557 (2023). https://doi.org/10.1007/s10311-023-01617-y
  11. Davis, B., (2021). AI and the energy transition.Technology, Petroleum Review.
  12. Das, U.K., Tey, K.S.,Seyedmahmoudian, M., Mekhilef, S., Idris, M.Y.I., Van Deventer, W.H.B., Stojcevski, A. (2018). "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
  13. Dewitte, S., Cornelis, J.P., Müller, R., Munteanu, A. (2021). Artificial Intelligence Revolutionises Weather Forecast, Climate Monitoring and Decadal Prediction. Remote Sens. 2021, 13, 3209. https://doi.org/10.3390/rs13163209
  14. Dhamija, P., Bag, S. (2020). Role of artificial intelligence in operations environment: a review and bibliometric analysis. The TQM Journal. ahead-of-print. 10.1108/TQM-10-2019-0243.
  15. Dubois, G., Sovacool, B., Aall, C., Nilsson, M., Barbier, C. (2019) A. Herrmann, et al., It starts at home? Climate policies targeting household consumption and behavioral decisions are key to low-carbon futures. Energy Research & Social Science, 52 (2019), pp. 144-158, 10.1016/j.erss.2019.02.001
  16. Ghaleb, H.; Alhajlah, H.H.; Bin Abdullah, A.A.; Kassem, M.A.; Al-Sharafi, M.A., (2022). A Scientometric Analysis and Systematic Literature Review for Construction Project Complexity. Buildings, 12, 482. https://doi.org/10.3390/buildings12040482
  17. Gaffin, S.R., Rosenzweig, C., Kong, A.Y. (2012) Adapting to climate change through urban green infrastructure, Nature Climate Change, 2 (10) (2012), p. 704, 10.1038/nclimate1685
  18. Guo Q, Ren M, Wu S, Sun Y, Wang J, Wang Q, Ma Y, Song X and Chen Y (2022) Applications of artificial intelligence in the field of air pollution: A bibliometric analysis. Front. Public Health 10:933665. doi: 10.3389/fpubh.2022.933665
  19. Huntingford, C., Jeffers, E. S., Bonsall, M. B., Christensen, H. M., Lees, T., Yang, H., (2019). Machine learning and artificial intelligence to aid climate change research and preparedness. Environmental Research Letters, vol. 14, no. 12, IOP. doi:10.1088/1748-9326/ab4e55.
  20. Issa, H., Jabbouri, R., & Palmer, M. (2022). An artificial intelligence (AI)-readiness and adoption framework for AgriTech firms. Technological Forecasting and Social Change, 182, 121874.2.
  21. Jain, H., Dhupper, R., Shrivastava, A. et al. (2023). AI-enabled strategies for climate change adaptation: protecting communities, infrastructure, and businesses from the impacts of climate change. Comput.Urban Sci. 3, 25 (2023). https://doi.org/10.1007/s43762-023-00100-2
  22. Jrad, M. (2023). A Role of Artificial Intelligence in the Context of Economy: Bibliometric Analysis and Systematic Literature Review. International Journal of Membrane Science and Technology. 10. 1563-1586. 10.15379/ijmst.v10i3.1756.
  23. Kamyab, H., Khademi, T., Chelliapan, S., Saberi Kamarposhti, M., Rezania, M., Yusuf, M., Farajnezhad, M., Abbas M., Hun Jeon, B., Ahn, Y.(2023). The latest innovative avenues for the utilization of artificial Intelligence and big data analytics in water resource management. Results in Engineering.
  24. Kaplan, A., Haenlein, M. (2019). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons. 63. 10.1016/j.bushor.2019.09.003.
  25. Karanth S, Benefo EO, Patra D, Pradhan AK (2022) Importance of artificial intelligence in evaluating climate change and food safety risk. J Agric Food Res. https://doi.org/10.1016/j.jafr.2022.100485
  26. Kouhizadeh, M.; Sarkis, J. (2018). Blockchain Practices, Potentials, and Perspectives in Greening Supply Chains. Sustainability 2018, 10, 3652. https://doi.org/10.3390/su10103652
  27. Kumar, P., Singh. A., Rajput, V & Yadav, A., Kumar, P., Singh, A.K., Minkina, T. (2022). Role of artificial intelligence, sensor technology, big data in agriculture: next-generation farming. 10.1016/B978-0-323-89778-5.00035-0.
  28. Feng, Y., Wang, X., Du, W., Wu, H., Wang, J., (2019) Effects of environmental regulation and FDI on urban innovation in China: A spatial Durbin econometric analysis, Journal of Cleaner Production. Retrieved from: https://www.sciencedirect.com/science/article/pii/S0959652619321468
  29. Filho, W., Wall, T., Mucova, S., Nagy, G., Balogun, A.l., Luetz, J., Ng, A., Kovaleva, M., Azam, F.M., Alves, F., Guevara, Z., Matandirotya, N., Skouloudis, A., Tzachor, A., Malakar, K., Gandhi, O. (2022). Deploying artificial intelligence for climate change adaptation. Technological Forecasting and Social Change. 180. 121662. 10.1016/j.techfore.2022.121662.
  30. Lakatos, E.S., Yong, G., Szilagyi, A., Clinci, D.S., Georgescu, L., Iticescu, C., Cioca, L.-I. (2021), Conceptualizing Core Aspects on Circular Economy in Cities. Sustainability, 13, 7549. Retrieved from: https://doi.org/10.3390/su13147549
  31. Lyu, W., Liu, J., (2021). Artificial Intelligence and emerging digital technologies in the energy sector. Applied Energy, Volume 303, https://doi.org/10.1016/j.apenergy.2021.117615.
  32. McCarthy, J., Minsky, M.L., Rochester, N. and Shannon, C.E. (2006). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, 27(4), pp.12-12
  33. Mehmood, M.U., Chun, D., Zeeshan, Han, H., Jeon, G., & Chen, K. (2019). A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy and Buildings.
  34. Nishant, R., Kennedy, M,, Corbett, J. (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management, Elsevier, vol. 53(C).
  35. Nost, E., Colven, E. (2022). Earth for AI: A Political Ecology of Data-Driven Climate Initiatives. Geoforum. 130. 23-34. 10.1016/j.geoforum.2022.01.016.
  36. Redhu, N., Thakur, Z., Yashveer, S., Mor, P. (2022). Artificial intelligence: a way forward for agricultural sciences. 10.1016/B978-0-323-89778-5.00007-6.
  37. Ristea, A.L., Popescu, C., Ioan-Franc, V., Belostecinic G., (2017), Scientometria și Evaluarea Rezultatelor Cercetării Ştiinţifice Economice. Journal „ECONOMICA” nr.4 (102) 2017, Retrieved from: https://irek.ase.md/xmlui/bitstream/handle/123456789/432/Ristea-AL_Popescu-C_Ioan-Franc-V_Belostecinic-G_Economica%20nr_4%20decembrie%202017.pdf?sequence=1&isAllowed=y
  38. Shaikh, T. A., Rasool, T., Lone, F. R., (2022). Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Comput. Electron. Agric. 198, C (Jul 2022). https://doi.org/10.1016/j.compag.2022.107119
  39. Shrestha, A., Mahmood, A., (2019). Review of Deep Learning Algorithms and Architectures. IEEE Access. PP. 1-1. 10.1109/ACCESS.2019.2912200.
  40. Stecuła, K., Wolniak, R., Grebski, W.W., (2023). AI-Driven Urban Energy Solutions—From Individuals to Society: A Review. Energies.; 16(24):7988. https://doi.org/10.3390/en16247988
  41. Serban, A.C., Lytras, M. (2020). Artificial Intelligence for Smart Renewable Energy Sector in Europe—Smart Energy Infrastructures for Next Generation Smart Cities. IEEE Access. PP. 1-1. 10.1109/ACCESS.2020.2990123.
  42. Suman, A., (2021) Role of renewable energy technologies in climate change adaptation and mitigation: A brief review from Nepal, Renewable and Sustainable Energy Reviews. Retrieved from: https://www.sciencedirect.com/science/article/pii/S1364032121008029
  43. Torky, M., Gad, I., Darwish, A., Hassanien, A.E. (2023). Artificial Intelligence for Predicting Floods: A Climatic Change Phenomenon. In: Hassanien, A.E., Darwish, A. (eds) The Power of Data: Driving Climate Change with Data Science and Artificial Intelligence Innovations. Studies in Big Data, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-031-22456-0_1
  44. Vinuesa, R., Azizpour, H., Leite, I. et al. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nat Commun 11, 233 (2020). https://doi.org/10.1038/s41467-019-14108-y
  45. Yang, T., Asanjan, A. A.,Welles, E., Gao, X., Sorooshian, S. and Liu X. (2017). Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information. Water Resour. Res., 53, 2786–2812, doi:10.1002/2017WR020482.
Language: English
Page range: 1658 - 1670
Published on: Jul 3, 2024
Published by: Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Florentina Chițu, Andra-Nicoleta Mecu, Georgiana-Ionela Marin, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution 4.0 License.