Have a personal or library account? Click to login
The Use of Forestry and Agricultural Biomass in the Production of Pellets Cover

The Use of Forestry and Agricultural Biomass in the Production of Pellets

Open Access
|Jul 2024

References

  1. Aghalari A., Aladwan B. S., Marufuzzaman M., Tanger S., Da Silva B. K., Gnaneswar Gude V. Optimizing a pellet supply system: Market-specific pellet production with biomass quality considerations. Computers & Chemical Engineering. 2021, 153, 107417,
  2. Anukam, A., Berghel, J., Henrikson, G., Frodeson, S., & Ståhl, M. (2021). A review of the mechanism of bonding in densified biomass pellets. Renewable and Sustainable Energy Reviews, 148, 111249. doi:10.1016/j.rser.2021.111249
  3. Bajwa D.S., Peterson T., Sharma N., Shojaeiarani J., Bajwa S. G. A review of densified solid biomass for energy production. Renewable and Sustainable Energy Reviews. 2018, 96, 296-305, https://doi.org/10.1016/j.rser.2018.07.040.
  4. Bălan, E. M., Cismaș, L. M., & Zeldea, C. G. (2021). Agricultural Biomass Production: Implications for Economic Growth and Environment in Central and Eastern European Countries. In Contemporary Issues in Social Science (Vol. 106, pp. 263-279). Emerald Publishing Limited.
  5. Bioenergy Europe | European Bioenergy Outlook – Pellet Report | 2022
  6. Cofas, E., & Bălăceanu, C. T. (2023). Evaluation of the biomass energy production potential in agricultural holdings in relation to their size. Case study for crop farms in Romania. Romanian Agricultural Research, (40).
  7. European Union: Biofuels Annual, June 22, 2021 | Attaché Report (GAIN) | E42021-0053
  8. García, R., Gil, M. V., Rubiera, F., & Pevida, C. (2019). Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel, 251, 739-753
  9. Kimming, M., Sundberg, C., Nordberg, Å., Baky, A., Bernesson, S., Norén, O., & Hansson, P. A. (2011). Biomass from agriculture in small-scale combined heat and power plants–A comparative life cycle assessment. Biomass and bioenergy, 35(4), 1572-1581.
  10. Kpalo S.Y., Zainuddin M.F., Manaf L.A., Roslan A.M. A Review of Technical and Economic Aspects of Biomass Briquetting. Sustainability. 2020, 12(11):4609. https://doi.org/10.3390/su12114609
  11. Malik B., Pirzadah T., Islam S., Tahir I., Kumar M., Rehman R. Biomass Pellet Technology: A Green Approach for Sustainable Development. In: Hakeem K., Jawaid M., Y. Alothman O. (eds) Agricultural Biomass Based Potential Materials. Springer, 2015 Cham. https://doi.org/10.1007/978-3-319-13847-3_19
  12. Picchio, R., Latterini, F., Venanzi, R., Stefanoni, W., Suardi, A., Tocci, D., & Pari, L. (2020). Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation. Energies, 13(11), 2937. doi:10.3390/en13112937
  13. Popa, L., Trokhaniak, V., Constantin, A. M., Miron, C., Zaica, A., Persu, C., & Pruteanu, A. (2023). Experimental research regarding the achievement of an equipment designed for chopping woody waste. (2023): 757-766.
  14. Pradhan, P., Arora, A., & Mahajani, S. M. (2018). Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy for sustainable development, 43, 1-14.
  15. Rodino, S., Butu, A., Dragomir, V., & Butu, M. (2019). An analysis regarding the biomass production sector in Romania-a bioeconomy point of view. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 19(1), 497-502.
  16. Roh, H. B. Wood Pellets as a Biofuel : Current Status and their Market Potential, 2016. doi:http://dx.doi.org/10.14288/1.0314326
  17. Saleem, M. (2022). Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon.
  18. Sarker, T. R., Azargohar, R., Dalai, A. K., & Meda, V. (2021). Characteristics of torrefied fuel pellets obtained from co-pelletization of agriculture residues with pyrolysis oil. Biomass and Bioenergy, 150, 106139.
  19. Schipfer, F., Kranzl, L., Olsson, O., & Lamers, P. (2020). The European wood pellets for heating market-Price developments, trade and market efficiency. Energy, 212, 118636.
  20. Sherwood, J. (2020). The significance of biomass in a circular economy. Bioresource Technology, 300, 122755.
  21. Smaga, M., Wielgosiński, G., Kochański, A., & Korczak, K. (2018). Biomass as a major component of pellets. Acta Innovations.
  22. Stasiak, M., Molenda, M., Bańda, M., Wiącek, J., Parafiniuk, P., & Gondek, E. (2017). Mechanical and combustion properties of sawdust—Straw pellets blended in different proportions. Fuel Processing Technology, 156, 366-375.
  23. Tauro, R., García, C. A., Skutsch, M., & Masera, O. (2018). The potential for sustainable biomass pellets in Mexico: An analysis of energy potential, logistic costs and market demand. Renewable and Sustainable Energy Reviews, 82, 380-389.
  24. Whittaker, C., & Shield, I. (2017). Factors affecting wood, energy grass and straw pellet durability–A review. Renewable and Sustainable Energy Reviews, 71, 1-11.
  25. Wiloso, E. I., Setiawan, A. A. R., Prasetia, H., Wiloso, A. R., Sudiana, I., Lestari, R., ... & Heijungs, R. (2020). Production of sorghum pellets for electricity generation in Indonesia: A life cycle assessment. Biofuel Research Journal, 7(3), 1178-1194.
  26. Zhang, Q., Zou, D., Zeng, X., Li, L., Wang, A., Liu, F., ... & Xiao, Z. (2021). Effect of the direct use of biomass in agricultural soil on heavy metals activation or immobilization?. Environmental Pollution, 272, 115989.
Language: English
Page range: 955 - 964
Published on: Jul 3, 2024
Published by: Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Steliana Rodino, Daniela Nicoleta Voicilă, Cristina Maria Sterie, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution 4.0 License.