Have a personal or library account? Click to login

The Use of Forestry and Agricultural Biomass in the Production of Pellets

Open Access
|Jul 2024

References

  1. Aghalari A., Aladwan B. S., Marufuzzaman M., Tanger S., Da Silva B. K., Gnaneswar Gude V. Optimizing a pellet supply system: Market-specific pellet production with biomass quality considerations. Computers & Chemical Engineering. 2021, 153, 107417,
  2. Anukam, A., Berghel, J., Henrikson, G., Frodeson, S., & Ståhl, M. (2021). A review of the mechanism of bonding in densified biomass pellets. Renewable and Sustainable Energy Reviews, 148, 111249. doi:10.1016/j.rser.2021.111249
  3. Bajwa D.S., Peterson T., Sharma N., Shojaeiarani J., Bajwa S. G. A review of densified solid biomass for energy production. Renewable and Sustainable Energy Reviews. 2018, 96, 296-305, https://doi.org/10.1016/j.rser.2018.07.040.
  4. Bălan, E. M., Cismaș, L. M., & Zeldea, C. G. (2021). Agricultural Biomass Production: Implications for Economic Growth and Environment in Central and Eastern European Countries. In Contemporary Issues in Social Science (Vol. 106, pp. 263-279). Emerald Publishing Limited.
  5. Bioenergy Europe | European Bioenergy Outlook – Pellet Report | 2022
  6. Cofas, E., & Bălăceanu, C. T. (2023). Evaluation of the biomass energy production potential in agricultural holdings in relation to their size. Case study for crop farms in Romania. Romanian Agricultural Research, (40).
  7. European Union: Biofuels Annual, June 22, 2021 | Attaché Report (GAIN) | E42021-0053
  8. García, R., Gil, M. V., Rubiera, F., & Pevida, C. (2019). Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel, 251, 739-753
  9. Kimming, M., Sundberg, C., Nordberg, Å., Baky, A., Bernesson, S., Norén, O., & Hansson, P. A. (2011). Biomass from agriculture in small-scale combined heat and power plants–A comparative life cycle assessment. Biomass and bioenergy, 35(4), 1572-1581.
  10. Kpalo S.Y., Zainuddin M.F., Manaf L.A., Roslan A.M. A Review of Technical and Economic Aspects of Biomass Briquetting. Sustainability. 2020, 12(11):4609. https://doi.org/10.3390/su12114609
  11. Malik B., Pirzadah T., Islam S., Tahir I., Kumar M., Rehman R. Biomass Pellet Technology: A Green Approach for Sustainable Development. In: Hakeem K., Jawaid M., Y. Alothman O. (eds) Agricultural Biomass Based Potential Materials. Springer, 2015 Cham. https://doi.org/10.1007/978-3-319-13847-3_19
  12. Picchio, R., Latterini, F., Venanzi, R., Stefanoni, W., Suardi, A., Tocci, D., & Pari, L. (2020). Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation. Energies, 13(11), 2937. doi:10.3390/en13112937
  13. Popa, L., Trokhaniak, V., Constantin, A. M., Miron, C., Zaica, A., Persu, C., & Pruteanu, A. (2023). Experimental research regarding the achievement of an equipment designed for chopping woody waste. (2023): 757-766.
  14. Pradhan, P., Arora, A., & Mahajani, S. M. (2018). Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy for sustainable development, 43, 1-14.
  15. Rodino, S., Butu, A., Dragomir, V., & Butu, M. (2019). An analysis regarding the biomass production sector in Romania-a bioeconomy point of view. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 19(1), 497-502.
  16. Roh, H. B. Wood Pellets as a Biofuel : Current Status and their Market Potential, 2016. doi:http://dx.doi.org/10.14288/1.0314326
  17. Saleem, M. (2022). Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon.
  18. Sarker, T. R., Azargohar, R., Dalai, A. K., & Meda, V. (2021). Characteristics of torrefied fuel pellets obtained from co-pelletization of agriculture residues with pyrolysis oil. Biomass and Bioenergy, 150, 106139.
  19. Schipfer, F., Kranzl, L., Olsson, O., & Lamers, P. (2020). The European wood pellets for heating market-Price developments, trade and market efficiency. Energy, 212, 118636.
  20. Sherwood, J. (2020). The significance of biomass in a circular economy. Bioresource Technology, 300, 122755.
  21. Smaga, M., Wielgosiński, G., Kochański, A., & Korczak, K. (2018). Biomass as a major component of pellets. Acta Innovations.
  22. Stasiak, M., Molenda, M., Bańda, M., Wiącek, J., Parafiniuk, P., & Gondek, E. (2017). Mechanical and combustion properties of sawdust—Straw pellets blended in different proportions. Fuel Processing Technology, 156, 366-375.
  23. Tauro, R., García, C. A., Skutsch, M., & Masera, O. (2018). The potential for sustainable biomass pellets in Mexico: An analysis of energy potential, logistic costs and market demand. Renewable and Sustainable Energy Reviews, 82, 380-389.
  24. Whittaker, C., & Shield, I. (2017). Factors affecting wood, energy grass and straw pellet durability–A review. Renewable and Sustainable Energy Reviews, 71, 1-11.
  25. Wiloso, E. I., Setiawan, A. A. R., Prasetia, H., Wiloso, A. R., Sudiana, I., Lestari, R., ... & Heijungs, R. (2020). Production of sorghum pellets for electricity generation in Indonesia: A life cycle assessment. Biofuel Research Journal, 7(3), 1178-1194.
  26. Zhang, Q., Zou, D., Zeng, X., Li, L., Wang, A., Liu, F., ... & Xiao, Z. (2021). Effect of the direct use of biomass in agricultural soil on heavy metals activation or immobilization?. Environmental Pollution, 272, 115989.
Language: English
Page range: 955 - 964
Published on: Jul 3, 2024
Published by: Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Steliana Rodino, Daniela Nicoleta Voicilă, Cristina Maria Sterie, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution 4.0 License.