Al-Gharabawi, F.W. & Abu-Naser, S.S. (2023). Machine Learning-Based Diabetes Prediction: Feature Analysis and Model Assessment. International Journal of Academic Engineering Research (IJAER) 7 (9), 10-17.
Alehegn, M., Joshi, R.R. & Mulay, P. (2019). Diabetes analysis and prediction using random forest, KNN, Naïve Bayes, and J48: an ensemble approach. Int J Sci Technol Res., 8(9), 1346–1354.
Beghriche, T., Djerioui, M., Brik, Y., Attallah, B. & Belhaouari, S.B. (2021) An Efficient Prediction System for Diabetes Disease Based on Deep Neural Network. Hindawi Complexity. Retrieved at: https://doi.org/10.1155/2021/6053824">https://doi.org/10.1155/2021/6053824.
Daghistani, T. & Alshammari, R. (2020). Comparison of statistical logistic regression and random forest machine learning techniques in predicting diabetes. J. Adv. Inf.Technol., 11(2), 78-83.
Islam, M.M.F., Ferdousi, R., Rahman, S. & Bushra, H.Y. (2020). Likelihood prediction of diabetes at early stage using data mining techniques, in Gupta M, Konar D, Bhattacharyya S, Biswas S (eds) Computer vision and machine intelligence in medical image analysis. Advances in intelligent systems and computing”, 992, Springer, Singapore, 113–125. Retrieved from: 10.1007/978-981-13-8798-2_12.
Iyer, A., Jeyalatha, S. & Sumbaly, R. (2015). Diagnosis of Diabetes Using Classification Mining Techniques. International Journal of Data Mining & Knowledge Management Process (IJDKP), 5, 1-14. Retrieved from: https://doi.org/10.5121/ijdkp.2015.5101">https://doi.org/10.5121/ijdkp.2015.5101.
Madhu, B., Aerranagula, V., Mahomad, R., Ravindernaik, V., Madhavi, K. & Krishna, G. (2023) Techniques of Machine Learning for the Purpose of Predicting Diabetes Risk in PIMA Indians. E3S Web of Conferences, 011. Retrieved at: https://doi.org/10.1051/e3sconf/202343001151">https://doi.org/10.1051/e3sconf/202343001151.
Malik, S., Harous, S. & El-Sayed, H. (2021). Comparative Analysis of Machine Learning Algorithms for Early Prediction of Diabetes Mellitus in Women. Modelling and Implementation of Complex Systems”, Springer International Publishing. Retrieved from: https://www.springerprofessional.de/en/comparative-analysis-of-machine-learning-algorithms-for-early-pr/18351326.
Perveen, S., Shahbaz, M., Guergachi, A. & Keshavjee, K. (2016). Performance analysis of data mining classification techniques to predict diabetes. Procedia Comput. Sci., 82, 115–121. Retrieved from https://dspace.library.uvic.ca/bitstream/handle/1828/9390/Keshavjee_Karim_ProcediaComputSci_2016.pdf?sequence=1&isAllowed=y
Purnami, S.W., Embong, A., Zainand, J.M. & Rahayu, S.P. (2019). A New Smooth Support Vector Machine and Its Applications in Diabetes Disease Diagnosis/ Journal of Computer Science. 5(12), 1003-1008.
Rhee, S.Y., Sung, J.M., Kim, S., Cho, I.J., Lee, S.E. & Chang, H.J. (2019). Development and Validation of a Deep Learning Based Diabetes Prediction System Using a Nationwide Population-Based Cohort. Diabetes Metab J., 45, 515-525. Retrieved at: https://doi.org/10.4093/dmj.2020.0081">https://doi.org/10.4093/dmj.2020.0081.
Sanakal, R. & Jayakumari, S.T. (2014). Prognosis of diabetes using data mining approach-fuzzy C means clustering and support vector machine. Int. J. Comput. TrendsTechnol., 11, 94–98.
Sen, S.K. & Dash, S. (2014). Application of Meta Learning Algorithms for the Prediction of Diabetes Disease. International Journal of Advance Research in Computer Science and Management Studies, 2, 396-401.
Soliman, O.S. & AboElhamd, E. (2014). Classification of Diabetes Mellitus using Modified Particle Swarm Optimization and Least Squares Support Vector Machine. Retrieved from arXiv:1405.0549.
Sridar, K. & Shanthi, D. (2014). Medical diagnosis system for the diabetes mellitus by using back propagation-Apriori algorithms. J. Theor. Appl. Inf. Technol., 68(1), 36-43.
Tasin, I., Ullah, T., Sanjida, N. & Khan, I.R. (2023). Diabetes prediction using machine learning and explainable AI techniques. Healthc. Technol. Lett., 10, 1–10. DOI: 10.1049/htl2.12039.
Tigga, N.P. & Garg, S. (2019). Predicting type 2 Diabetes using Logistic Regression. Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems MCCS, Lecture Notes of Electrical Engineering, Springer.
Yu, W., Liu, T., Valdez, R., Gwinn, M. & Khoury, M.J. (2010). Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Med. Inform. Decis. Mak. 10(16). Retrieved from doi:10.1186/1472-6947-10-16.
Zou, Q., Qu, K., Luo, Y., Yin, D., Ju, Y. & Tang, H. (2018). Predicting Diabetes Mellitus with Machine Learning Techniques. Frontiers in genetics, 9, 515. Retrieved from https://www.frontiersin.org/articles/10.3389/fgene.2018.00515/full.