Have a personal or library account? Click to login
The Applicability of Machine Learning in Prediabetes Prediction Cover
Open Access
|Jul 2023

References

  1. Ahuja, R., Sharma, S.C., Ali, M. (2019). A diabetic disease prediction model based on classification algorithms. Ann Emerg Technol Comput., 3(3), 44–52. Retrieved from doi: 10.33166/AETiC.2019.03.005.
  2. Alehegn, M., Joshi, R.R., Mulay, P. (2019). Diabetes analysis and prediction using random forest, KNN, Naïve Bayes, and J48: an ensemble approach. Int J Sci Technol Res., 8(9), 1346–1354.
  3. Ameena, R.R., Ashadevi, B. (2020). Predictive analysis of diabetic women patients using R. Peter JD, Fernandes SL (eds) Systems simulation and modeling for cloud computing and big data applications” Elsevier Inc., Amsterdam. Retrieved from 10.1016/B978-0-12-819779-0.00006-X.
  4. Amour Diwani, S., Sam, A. (2014). Diabetes forecasting using supervised learning techniques. Adv. Comput. Sci.: Int. J., 3(5), 10–18, Retrieved from: http://www.acsij.org/acsij/article/view/156.
  5. Anuja Kumari, V., Chitra, R. (2013). Classification of diabetes disease using support vector machine”, Int. J. Eng. Res. Appl., 3, 1797–1801.
  6. Ardern, C.I., Katzmarzyk, P.T., Janssen, I., Church, T.S., Blair, S.N. (2005). Revised Adult Treatment Panel III Guidelines and Cardiovascular Disease Mortality in Men Attending a Preventive Medical Clinic. Circulation. 112(10), 1478–1485. Retrieved from https://www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.105.548198.
  7. Bozkurt, R.M., Yurtay, N., Yilmaz, Z., Sertkaya, C. (2014). Comparison of different methods for determining diabetes. Turk J.Electr Eng Comput Sci, 22, 1044–1055. Retrieved from https://doi.org/10.3906/elk-1209-82.
  8. Daanouni, O., Cherradi, B., Tmiri, A. (2019). Predicting diabetes diseases using mixed data and supervised machine learning algorithms. Abstracts of the 4th international conference on smart city applications, ACM”, Casablanca. Retrieved from 10.1145/3368756.3369072.
  9. Daghistani, T., Alshammari, R. (2020). Comparison of statistical logistic regression and random forest machine learning techniques in predicting diabetes. J. Adv. Inf.Technol., 11(2), 78-83.
  10. Dalakleidi, K.V., Zarkogianni, K., Karamanos, V.G., Thanopoulou, A.C., Nikita, K.S. (2013). A hybrid genetic algorithm for the selection of the critical features for risk prediction of cardiovascular complications in Type 2 Diabetes patients. Abstracts of the 13th IEEE international conference on BioInformatics and BioEngineering, Chania, 10-13 November 2013. Retrieved from: 10.1109/BIBE.2013.6701620.
  11. Dewangan, A.K., Agrawal, P. (2015). Classification of diabetes mellitus using machine learning techniques. Int. J. Eng. Appl. Sci., 2(5), 145-148.
  12. Harris, M.I., Klein, R., Welborn, T.A., Knuiman, M.W. (1992). Onset of NIDDM occurs at least 4-7 yr before clinical diagnosis. Diabetes Care, 15(7), 815–819. Retrieved from doi: 10.2337/diacare.15.7.815. https://arpim.ro/1-din-10-romani-are-diabet-zaharat-cat-si-ce-stiu-ceilalti-9-despre-aceasta-afectiune/
  13. International Diabetes Federation. Metabolic Syndrome (2022). Retrieved from https://www.idf.org›attachments›attachments
  14. Islam, M.M.F., Ferdousi, R., Rahman, S., Bushra, H.Y. (2020). Likelihood prediction of diabetes at early stage using data mining techniques, in Gupta M, Konar D, Bhattacharyya S, Biswas S (eds) Computer vision and machine intelligence in medical image analysis. Advances in intelligent systems and computing”, 992, Springer, Singapore, 113–125. Retrieved from: 10.1007/978-981-13-8798-2_12.
  15. Iyer, A., Jeyalatha, S., Sumbaly, R. (2015). Diagnosis of Diabetes Using Classification Mining
  16. Techniques. International Journal of Data Mining & Knowledge Management Process (IJDKP), 5, 1-14. Retrieved from: https://doi.org/10.5121/ijdkp.2015.5101.
  17. Jaiswal, V., Negi, A., Pal, T (2021). A review on current advances in machine learning based diabetes prediction, Prim Care Diabetes. 15(3), 435-443. Retrieved from doi:10.1016/j.pcd.2021.02.005.
  18. Khanam, J.J., Foo, S.Y. (2021). A comparison of machine learning algorithms for diabetes prediction. ICT Express, 7(4), 432–439.
  19. Malik, S., Harous, S., El-Sayed, H. (2021). Comparative Analysis of Machine Learning Algorithms for Early Prediction of Diabetes Mellitus in Women. Modelling and Implementation of Complex Systems”, Springer International Publishing. Retrieved from: https://www.springerprofessional.de/en/comparative-analysis-of-machine-learning-algorithms-for-early-pr/18351326.
  20. Maniruzzaman, M., Rahman, M.J., Al-MehediHasan, M., Suri, H.S., Abedin, Md.M., El-Baz, A., Suri, J.S. (2018). Accurate diabetes risk stratification using machine learning: role of missing value and outliers.. J Med Syst., 42. Retrieved from: https://doi.org/10.1007/s10916-018-0940-7.
  21. Mary Posonia, A., Vigneshwari, S., Jamuna Rani, D. (2000). Machine Learning based Diabetes Prediction using Decision Tree J48. Proceedings of the Third International Conference on Intelligent Sustainable Systems. Retrieved from DOI:10.1109/ICISS49785.2020.9316001.
  22. Mota, M., Popa, S.G., Mota, E., Mitrea, A., Catrinoiu, D., Cheta, D.M., Guja, C., Hancu, N., Ionescu-Tirgoviste, C., Lichiardopol, R., Mihai, B.M., Popa, A.R., Zetu, C., Bala, C.G., Roman, G., Serafinceanu, C., Serban, V., Timar, R., Veresiu, I.A., Vlad, A.R. (2016). Prevalence of diabetes mellitus and prediabetes in the adult Romanian population: PREDATORR study. J Diabetes. 8(3), 336-344. Retrieved from doi:10.1111/1753-0407.12297.
  23. Nai-arun, N., Moungmai, R. (2015). Comparison of Classifiers for the Risk of Diabetes Prediction. Procedia Computer Science, 69, 135-142.
  24. Perveen, S., Shahbaz, M., Guergachi, A., Keshavjee, K. (2016). Performance analysis of data mining classification techniques to predict diabetes. Procedia Comput. Sci., 82, 115–121. Retrieved from https://dspace.library.uvic.ca/bitstream/handle/1828/9390/Keshavjee_Karim_ProcediaComputSci_2016.pdf?sequence=1&isAllowed=y.
  25. Purnami, S.W., Embong, A., Zainand, J.M., Rahayu, S.P. (2019). A New Smooth Support Vector Machine and Its Applications in Diabetes Disease Diagnosis/ Journal of Computer Science. 5(12), 1003-1008.
  26. Sanakal, R., Jayakumari, S.T. (2014). Prognosis of diabetes using data mining approach-fuzzy C means clustering and support vector machine. Int. J. Comput. TrendsTechnol., 11, 94–98.
  27. Sen, S.K., Dash, S. (2014). Application of Meta Learning Algorithms for the Prediction of Diabetes Disease. International Journal of Advance Research in Computer Science and Management Studies, 2, 396-401.
  28. Sharma, T., Shah, M. (2021). A comprehensive review of machine learning techniques on diabetes detection. Vis Comput Ind Biomed Art., 4(1), 30. Retrieved from: doi:10.1186/s42492-021-00097-7.
  29. Sisodia, D., Sisodia, D.S. (2018). Prediction of diabetes using classification algorithms. Procedia Comput. Sci. 132, 1578–1585.
  30. Soliman, O.S., AboElhamd, E. (2014). Classification of Diabetes Mellitus using Modified Particle Swarm Optimization and Least Squares Support Vector Machine. Retrieved from arXiv:1405.0549.
  31. Sridar, K., Shanthi, D. (2014). Medical diagnosis system for the diabetes mellitus by using back propagation-Apriori algorithms. J. Theor. Appl. Inf. Technol., 68(1), 36-43.
  32. Tabák, A.G., Herder, C., Rathmann, W., Brunner, E.J., Kivimäki, M (2012). Prediabetes: a high-risk state for diabetes development. Lancet. 379(9833), 2279-2290. Retrieved from doi:10.1016/S0140-6736(12)60283-9.
  33. Tigga, N.P., Garg, S. (2019). Predicting type 2 Diabetes using Logistic Regression. Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems MCCS, Lecture Notes of Electrical Engineering, Springer.
  34. Yu, W., Liu, T., Valdez, R., Gwinn, M., Khoury, M.J. (2010). Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Med. Inform. Decis. Mak. 10(16). Retrieved from doi:10.1186/1472-6947-10-16.
  35. Zand, A., Ibrahim, K., Patham, B (2018). Prediabetes: Why Should We Care?. Methodist Debakey Cardiovasc J. 14(4), 289-297. Retrieved from: doi:10.14797/mdcj-14-4-289.
  36. Zou, Q., Qu, K., Luo, Y., Yin, D., Ju, Y., Tang, H. (2018). Predicting Diabetes Mellitus with Machine Learning Techniques. Frontiers in genetics, 9, 515. Retrieved from https://www.frontiersin.org/articles/10.3389/fgene.2018.00515/full.
Language: English
Page range: 1757 - 1768
Published on: Jul 14, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Oana Vîrgolici, Horia-Marius Vîrgolici, Ana Ramona Bologa, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution 4.0 License.