Ang, A., Bekaert, G., & Wei, M. (2007). Do macro variables, asset markets, or surveys forecast inflation better?. <em>Journal of monetary Economics</em>, <em>54</em>(4), 1163-1212.
Atkeson, Andrew and Lee E. Ohanian (2001): Are Phillips Curves Useful for Forecasting Inflation?, Federal Reserve Bank of Minneapolis Quarterly Review, 25, pp.2-11
Batini, N., & Haldane, A. (1999). Forward-looking rules for monetary policy. In <em>Monetary policy rules</em> (pp. 157-202). University of Chicago Press.
Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. <em>IEEE transactions on neural networks</em>, <em>5</em>(2), 157-166.
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training algorithm for optimal margin classifiers. In <em>Proceedings of the fifth annual workshop on Computational learning theory</em> (pp. 144-152).
Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In <em>Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining</em> (pp. 785-794).
Faust, J., and Wright, J. (2013), “Forecasting Inflation,” in Handbook of Economic Forecasting (Vol. 2A), eds. G. Elliott and A. Timmermann, Amsterdam: Elsevier.
Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. <em>Neural networks</em>, <em>18</em>(5-6), 602-610.
Guyon, I., Boser, B., & Vapnik, V. (1993). Automatic capacity tuning of very large VC-dimension classifiers. In <em>Advances in neural information processing systems</em> (pp. 147-155).
Inoue, A., and Kilian, L. (2008), “How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. CPI Inflation,” <em>Journal of the American Statistical Association</em>, 103, 511–522.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., & Liu, T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. In <em>Advances in neural information processing systems</em> (pp. 3146-3154).
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and Machine Learning forecasting methods: Concerns and ways forward. <em>PloS one</em>, <em>13</em>(3), e0194889.
Mandalinci, Z. (2017). Forecasting inflation in emerging markets: An evaluation of alternative models. <em>International Journal of Forecasting</em>, <em>33</em>(4), 1082-1104.
Manzan, S., & Zerom, D. (2013). Are macroeconomic variables useful for forecasting the distribution of US inflation?. <em>International Journal of Forecasting</em>, <em>29</em>(3), 469-478.
Medeiros, M., and Mendes, E. (2016), “1-Regularization of High-Dimensional Time-Series ModelsWith Non-Gaussian and Heteroskedastic Errors,” <em>Journal of Econometrics</em>, 191, 255–271.
Medeiros, M. C., Vasconcelos, G. F., Veiga, Á., & Zilberman, E. (2021). Forecasting inflation in a data-rich environment: the benefits of machine learning methods. <em>Journal of Business & Economic Statistics</em>, <em>39</em>(1), 98-119.
Özgür, Ö., & Akkoç, U. (2021). Inflation forecasting in an emerging economy: selecting variables with machine learning algorithms. <em>International Journal of Emerging Markets</em>.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. <em>nature</em>, <em>323</em>(6088), 533-536.
Ülke, V., Sahin, A., & Subasi, A. (2018). A comparison of time series and machine learning models for inflation forecasting: empirical evidence from the USA. <em>Neural Computing and Applications</em>, <em>30</em>(5), 1519-1527.
Vapnik, V., Golowich, S. E., & Smola, A. J. (1997). Support vector method for function approximation, regression estimation and signal processing. In <em>Advances in neural information processing systems</em> (pp. 281-287).
Zahara, S., & Ilmiddaviq, M. B. (2020). Consumer price index prediction using Long Short Term Memory (LSTM) based cloud computing. In <em>Journal of Physics: Conference Series</em> (Vol. 1456, No. 1, p. 012022). IOP Publishing.