Have a personal or library account? Click to login
Can Machine Learning Models Predict Inflation? Cover

References

  1. Ang, A., Bekaert, G., &amp; Wei, M. (2007). Do macro variables, asset markets, or surveys forecast inflation better?. <em>Journal of monetary Economics</em>, <em>54</em>(4), 1163-1212.
  2. Atkeson, Andrew and Lee E. Ohanian (2001): Are Phillips Curves Useful for Forecasting Inflation?, Federal Reserve Bank of Minneapolis Quarterly Review, 25, pp.2-11
  3. Bai, Jushan and Serena Ng (2008): Forecasting Economic Time Series Using Targeted Predictors, Journal of Econometrics, 146, pp.304-317.
  4. Batini, N., &amp; Haldane, A. (1999). Forward-looking rules for monetary policy. In <em>Monetary policy rules</em> (pp. 157-202). University of Chicago Press.
  5. Bengio, Y., Simard, P., &amp; Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. <em>IEEE transactions on neural networks</em>, <em>5</em>(2), 157-166.
  6. Boser, B. E., Guyon, I. M., &amp; Vapnik, V. N. (1992, July). A training algorithm for optimal margin classifiers. In <em>Proceedings of the fifth annual workshop on Computational learning theory</em> (pp. 144-152).
  7. Breiman, L., Friedman, J., Olshen, R., &amp; Stone, C. (1984). Classification and regression trees. Wadsworth Int. Group, 37(15), 237-251.
  8. Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.
  9. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
  10. Chen, T., &amp; Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In <em>Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining</em> (pp. 785-794).
  11. Dotsey, Michael, Shigeru Fujita and Tom Stark (2011): Do Phillips Curves Conditionally Help to Forecast Ination, working paper
  12. Faust, J., and Wright, J. (2013), “Forecasting Inflation,” in Handbook of Economic Forecasting (Vol. 2A), eds. G. Elliott and A. Timmermann, Amsterdam: Elsevier.
  13. Graves, A., &amp; Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. <em>Neural networks</em>, <em>18</em>(5-6), 602-610.
  14. Guyon, I., Boser, B., &amp; Vapnik, V. (1993). Automatic capacity tuning of very large VC-dimension classifiers. In <em>Advances in neural information processing systems</em> (pp. 147-155).
  15. Hochreiter, S., &amp; Schmidhuber, J. (1997). Long short-term memory. <em>Neural computation</em>, <em>9</em>(8), 1735-1780.
  16. Inoue, A., and Kilian, L. (2008), “How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. CPI Inflation,” <em>Journal of the American Statistical Association</em>, 103, 511–522.
  17. Ivașcu, C. F. (2021). Option pricing using machine learning. <em>Expert Systems with Applications</em>, <em>163</em>, 113799.
  18. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., &amp; Liu, T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. In <em>Advances in neural information processing systems</em> (pp. 3146-3154).
  19. Makridakis, S., Spiliotis, E., &amp; Assimakopoulos, V. (2018). Statistical and Machine Learning forecasting methods: Concerns and ways forward. <em>PloS one</em>, <em>13</em>(3), e0194889.
  20. Mandalinci, Z. (2017). Forecasting inflation in emerging markets: An evaluation of alternative models. <em>International Journal of Forecasting</em>, <em>33</em>(4), 1082-1104.
  21. Manzan, S., &amp; Zerom, D. (2013). Are macroeconomic variables useful for forecasting the distribution of US inflation?. <em>International Journal of Forecasting</em>, <em>29</em>(3), 469-478.
  22. Medeiros, M., and Mendes, E. (2016), “1-Regularization of High-Dimensional Time-Series ModelsWith Non-Gaussian and Heteroskedastic Errors,” <em>Journal of Econometrics</em>, 191, 255–271.
  23. Medeiros, M. C., Vasconcelos, G. F., Veiga, Á., &amp; Zilberman, E. (2021). Forecasting inflation in a data-rich environment: the benefits of machine learning methods. <em>Journal of Business &amp; Economic Statistics</em>, <em>39</em>(1), 98-119.
  24. Nakamura, E. (2005), “Inflation Forecasting Using a Neural Network,” <em>Economics Letters</em>, 86, 373–378.
  25. Özgür, Ö., &amp; Akkoç, U. (2021). Inflation forecasting in an emerging economy: selecting variables with machine learning algorithms. <em>International Journal of Emerging Markets</em>.
  26. Rumelhart, D. E., Hinton, G. E., &amp; Williams, R. J. (1986). Learning representations by back-propagating errors. <em>nature</em>, <em>323</em>(6088), 533-536.
  27. Smola, A. J., &amp; Schölkopf, B. (2004). A tutorial on support vector regression. <em>Statistics and computing</em>, <em>14</em>(3), 199-222.
  28. Stock, J. H., &amp; Watson, M. W. (1999). Forecasting inflation. <em>Journal of Monetary Economics</em>, <em>44</em>(2), 293-335.
  29. Stock, J., and Watson, M. (2010), “Modeling Inflation after the Crisis,” Technical Report, National Bureau of Economic Research.
  30. Ülke, V., Sahin, A., &amp; Subasi, A. (2018). A comparison of time series and machine learning models for inflation forecasting: empirical evidence from the USA. <em>Neural Computing and Applications</em>, <em>30</em>(5), 1519-1527.
  31. Vapnik, V. (1995). The nature of statistical learning theory. Berlin: Springer.
  32. Vapnik, V., Golowich, S. E., &amp; Smola, A. J. (1997). Support vector method for function approximation, regression estimation and signal processing. In <em>Advances in neural information processing systems</em> (pp. 281-287).
  33. Zahara, S., &amp; Ilmiddaviq, M. B. (2020). Consumer price index prediction using Long Short Term Memory (LSTM) based cloud computing. In <em>Journal of Physics: Conference Series</em> (Vol. 1456, No. 1, p. 012022). IOP Publishing.
Language: English
Page range: 1748 - 1756
Published on: Jul 14, 2023
Published by: The Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2023 Codruț Ivașcu, published by The Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution 4.0 License.