Have a personal or library account? Click to login
Study regarding the volatility of main cryptocurrencies Cover
Open Access
|Aug 2022

References

  1. Anghel D. (2020). A Reality Check on Trading Rule Performance in the Cryptocurrency Market: Machine Learning vs. Technical Analysis. Finance Research Letters.
  2. Aras S. (2021). Stacking hybrid GARCH models for forecasting Bitcoin volatility. Expert Systems With Applications 174.10.1016/j.eswa.2021.114747
  3. Bariviera A.F. (2020). One model is not enough: Heterogeneity in cryptocurrencies’ multifractal profiles. Finance Research Letters.
  4. Baur D.G., Hong K. (2017). Bitcoin: Medium of Exchange or Speculative Assets? Journal of International Financial Markets, Institutions&Money, issue 54, 62-87.10.1016/j.intfin.2017.12.004
  5. Białkowski J. (2019). Cryptocurrencies in institutional investors’ portfolios: Evidence from industry stop-loss rules; Economic Letters, vol. 191.
  6. Caporale G., Timur Z. (2019). Modelling volatility of cryptocurrencies using Markov-Switching GARCH models. Research in International Business and Finance, 48, 143-155.10.1016/j.ribaf.2018.12.009
  7. Chu, J., S. Chan, S. Nadarajah, and J. Osterrieder (2017). GARCH Modeling of cryptocurrencies. Journal of Risk and Financial Management 10 (17).10.3390/jrfm10040017
  8. Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar - A GARCH volatility analysis. Finance Research Letters.10.1016/j.frl.2015.10.008
  9. Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters 158, 3-6.10.1016/j.econlet.2017.06.023
  10. Kristjanpoller W., Minutolo M (2015). Gold price volatility: A forecasting approach using the Artificial Neural Network–GARCH model. Expert Systems with Applications 42(20).
  11. Köchling G., Schmidtke P, Posch P. (2019). Volatility forecasting accuracy for Bitcoin. Economics Letters 191.
  12. Malcolm, C.V., (2018). Bitcoin, crypto-coins, and global anti-money laundering governance. Crime, Law and Social Change, 69(2), 283-305.10.1007/s10611-017-9756-5
  13. Naimy V, Haddad O, Fernández-Avile´s G, El Khoury R (2021). The predictive capacity of GARCH-type models in measuring the volatility of crypto and world currencies. PLoS ONE 16(1).10.1371/journal.pone.0245904784598133513150
  14. Pavel C., Miroslava R. (2016). The economics of Bitcoin price formation. Applied Economics, 48(2), 1799-1815.
  15. Soylu K., Okur M., Çatıkkaş Ö., Altintig A. (2020). Long Memory in the Volatility of Selected Cryptocurrencies: Bitcoin, Ethereum and Ripple. Journal of Risk Financial Management, 13(6), 107.10.3390/jrfm13060107
  16. Yermack, D. (2013). Is Bitcoin a Real Currency? An economic appraisal. Working Paper 19747, National Bureau of Economic Research.10.3386/w19747
  17. Zhenghui Li, Liming Chen, Hao Dong (2021). What are bitcoin market reactions to its-related events? International Review of Economics and Finance, 73, 1-10.10.1016/j.iref.2020.12.020
  18. www.cryptocomapare.com
Language: English
Page range: 179 - 187
Published on: Aug 8, 2022
Published by: Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Raluca Micu, Dalina Dumitrescu, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution 4.0 License.