Have a personal or library account? Click to login
Consumers’ perception on the use of cognitive computing Cover
By:
Open Access
|Dec 2021

References

  1. Appel, A.P., Gandour, F., & Cabdello, H. (2017). Cognitive Computing: Where Big Data Is Driving Us. In Zomaya, A.Y., & Sakr, S. (Eds.), Handbook of Big Data Technologies, 807-850, Springer.10.1007/978-3-319-49340-4_24
  2. Berger, J., Humphreys, A., Ludwig, S., Moe, W.W., Netzer, O., & Schweidel, D.A. (2020). Uniting the Tribes: Using Text for Marketing Insight, Journal of Marketing, 84, 1-25.10.1177/0022242919873106
  3. Busu, C. & Busu, M. (2018). Modeling the Circular Economy Processes at the EU Level Using an Evaluation Algorithm Based on Shannon Entropy, Processes, 6(11), Article 225.10.3390/pr6110225
  4. Chen, Y., Argentinis, E., & Weber, G. (2016). IBM Watson: How Cognitive Computing Can Be Applied to Big Data Challenges in Life Sciences Research, Clinical Therapeutics, 38(4), 688-701.10.1016/j.clinthera.2015.12.00127130797
  5. Cui, G., Wong, M.L., & Lui, H.K. (2006). Machine Learning for Direct Marketing Response Models: Bayesian Networks with Evolutionary Programming, Management Science, 52(4), 597-612.10.1287/mnsc.1060.0514
  6. Demirkan, H., Bess, C., Spohrer, J., Rayes, A., Allen, D., & Moghaddam, Y. (2015). Innovations with Smart Service Systems: Analytics, Big Data, Cognitive Assistance, and the Internet of Everything, Communications of the Association for Information Systems, 37(35), 733-752.10.17705/1CAIS.03735
  7. Duan, Y., Edwards, J.S., & Dwivedi, Y.K. (2019). Artificial Intelligence for Decision Making in the Era of Big Data – Evolution, Challenges and Research Agenda, International Journal of Information Management, 48, 63-71.10.1016/j.ijinfomgt.2019.01.021
  8. Dziewanowska, K. (2015). Dimensions of Real and Virtual Consumer Experiences, Faculty of Management Working Paper Series (University of Warsaw), 9(4).
  9. Fosso-Wamba, S., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study, International Journal of Production Economics, 165, 234-246.10.1016/j.ijpe.2014.12.031
  10. Grover, P., & Kar, A. K. (2017). Big data analytics: A review on theoretical contributions and tools used in literature. Global Journal of Flexible Systems Management, 18(3), 203-229.10.1007/s40171-017-0159-3
  11. Gupta, S., Karb, A.K., Baabdullahc, A., & Al-Khowaiterd, W.A.A. (2018). Big Data with Cognitive Computing: A Review for the Future, International Journal of Information Management, 42, 78-89.10.1016/j.ijinfomgt.2018.06.005
  12. Gursoy, D., Chin, O.H., Lu, L., & Nunkoob, R. (2019), Consumers Acceptance of Artificially Intelligent (AI) Device Use in Service Delivery, International Journal of Information Management, 49, 157-169.10.1016/j.ijinfomgt.2019.03.008
  13. Holmlund, M., Van Vaerenbergh, Y., Ciuchita, R., Ravald, A., Sarantopoulos, P., Villarroel Ordenes, F., & Zaki, M. (2019). Customer Experience Management in The Age of Big Data Analytics: A strategic framework, Journal of Business Research, 116, 356-365.10.1016/j.jbusres.2020.01.022
  14. Huang, M.H., & Rust, R.T. (2018). Artificial Intelligence in Service, Journal of Service Research, 21(2), 155-172.10.1177/1094670517752459
  15. Hurwitz, J., Kaufman, M., & Bowles, A. (2015). Cognitive Computing and Big Data Analytics. Hoboken: Wiley.
  16. Lu, L., Cai, R., & Gursoy, D. (2019). Developing and Validating a Service Robot Integration Willingness Scale, International Journal of Hospitality Management, 80, 36-51.10.1016/j.ijhm.2019.01.005
  17. McColl-Kennedy, J.R, Zaki, M., Lemon, K.N., Urmetzer, F. & Needly, A. (2019): Gaining Customer Experience Insights that Matter, Journal of Service Research, 22(8), 8-26.10.1177/1094670518812182
  18. Pelau, C., Ene, I. & Pop, M.I. (2021). The impact of artificial intelligence on consumers’ identity and human skills, Amfiteatru Economic, 23(56), 33-45.10.24818/EA/2021/56/33
  19. Pelau, C., & Acatrinei, C. (2019). The Paradox of Energy Consumption Decrease in the Transition Period towards a Digital Society, Energies, 12(8), Article 1428.10.3390/en12081428
  20. Pop, N.Al., & Pelau, C. (2017). Correlations within the EFQM Business Excellence Model by Applying a Factor Analysis, Amfiteatru Economic, 44, 28-40.
  21. Reynolds, H. (2015). Big Data and Cognitive Computing, Cognitive Computing Consortium.
  22. Rust R.T., & Huang, M.H. (2014). The Service Revolution and the Transformation of Marketing Science, Marketing Science, 33(2), 206-22.10.1287/mksc.2013.0836
  23. Sabharwal, N., Barua, S., Anand N., & Aggarwal, P. (2020). Developing Cognitive Bots Using the IBM Watson Engine, California: Apress.10.1007/978-1-4842-5555-1
  24. Topol, E.J. (2019). High-performance medicine: the convergence of human and artificial intelligence, Nat Med, 25, 44-56.10.1038/s41591-018-0300-730617339
  25. Varadarajan, V., Kommers, P., Piuri, V., & Subramaniyaswamy, V. (2020). Recent trends, challenges and applications in cognitive computing for intelligent systems, Journal of Intelligent & Fuzzy Systems, 39, 8041-8041.10.3233/JIFS-189309
  26. Zaki, M. (2019). Digital transformation: Harnessing Digital Technologies for the Next Generation of Services, Journal of Services Marketing, 33(4), 429-435.10.1108/JSM-01-2019-0034
  27. Zbuchea, A., Pinzaru, F., Busu, M., Stan, S.O., & Bargaoanu, A. (2019). Sustainable knowledge management and its impact on the performances of biotechnology organizations, Sustainability, 11(2), Article 359.10.3390/su11020359
Language: English
Page range: 639 - 649
Published on: Dec 31, 2021
Published by: The Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2021 Corina Pelau, Maria Barbul, published by The Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution 4.0 License.