Have a personal or library account? Click to login
Machine learning in electricity fraud detection in smart grids with multivariate Gaussian distribution Cover

Machine learning in electricity fraud detection in smart grids with multivariate Gaussian distribution

Open Access
|Dec 2021

References

  1. Aziz, S., Naqvi, S. Z. H., Khan, M. U., & Aslam, T. (2020). Electricity Theft Detection using Empirical Mode Decomposition and K-Nearest Neighbors. In 2020 International Conference on Emerging Trends in Smart Technologies, ICETST 2020. https://doi.org/10.1109/ICETST49965.2020.9080727.10.1109/ICETST49965.2020.9080727
  2. Basu, K., Debusschere, V., Douzal-Chouakria, A., & Bacha, S. (2015). Time series distance-based methods for non-intrusive load monitoring in residential buildings. Energy and Buildings. https://doi.org/10.1016/j.enbuild.2015.03.021.10.1016/j.enbuild.2015.03.021
  3. Cody, C., Ford, V., & Siraj, A. (2016). Decision tree learning for fraud detection in consumer energy consumption. In Proceedings – 2015 IEEE 14th International Conference on Machine Learning and Applications, ICMLA 2015. https://doi.org/10.1109/ICMLA.2015.80.10.1109/ICMLA.2015.80
  4. Coma-Puig, B., Carmona, J., Gavalda, R., Alcoverro, S., & Martin, V. (2016). Fraud detection in energy consumption: A supervised approach. In Proceedings - 3rd IEEE International Conference on Data Science and Advanced Analytics, DSAA 2016. https://doi.org/10.1109/DSAA.2016.19.10.1109/DSAA.2016.19
  5. Jain, S., Choksi, K. A., & Pindoriya, N. M. (2019). Rule-based classification of energy theft and anomalies in consumers load demand profile. IET Smart Grid. https://doi.org/10.1049/ietstg.2019.0081.10.1049/iet-stg.2019.0081
  6. Lyu, L., Jin, J., Rajasegarar, S., He, X., & Palaniswami, M. (2017). Fog-empowered anomaly detection in IoT using hyperellipsoidal clustering. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2017.2709942.10.1109/JIOT.2017.2709942
  7. Massaferro, P., Martino, J. M. Di, & Fernandez, A. (2020). Fraud Detection in Electric Power Distribution: An Approach That Maximizes the Economic Return. IEEE Transactions on Power Systems. https://doi.org/10.1109/TPWRS.2019.2928276.10.1109/TPWRS.2019.2928276
  8. Siffer, A., Fouque, P. A., Termier, A., & Largouet, C. (2017). Anomaly detection in streams with extreme value theory. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. https://doi.org/10.1145/3097983.3098144.10.1145/3097983.3098144
  9. Spirić, J. V., Dočić, M. B., & Stanković, S. S. (2015). Fraud detection in registered electricity time series. International Journal of Electrical Power and Energy Systems. https://doi.org/10.1016/j.ijepes.2015.02.037.10.1016/j.ijepes.2015.02.037
  10. Yip, S. C., Tan, W. N., Tan, C. K., Gan, M. T., & Wong, K. S. (2018). An anomaly detection framework for identifying energy theft and defective meters in smart grids. International Journal of Electrical Power and Energy Systems. https://doi.org/10.1016/j.ijepes.2018.03.025.10.1016/j.ijepes.2018.03.025
  11. Zanetti, M., Jamhour, E., Pellenz, M., Penna, M., Zambenedetti, V., & Chueiri, I. (2019). A Tunable Fraud Detection System for Advanced Metering Infrastructure Using Short-Lived Patterns. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2017.2753738.10.1109/TSG.2017.2753738
Language: English
Page range: 543 - 551
Published on: Dec 31, 2021
Published by: Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Simona-Vasilica Oprea, Adela Bâra, Niculae Oprea, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution 4.0 License.