Have a personal or library account? Click to login
Machine learning in electricity fraud detection in smart grids with multivariate Gaussian distribution Cover

Machine learning in electricity fraud detection in smart grids with multivariate Gaussian distribution

Open Access
|Dec 2021

References

  1. Aziz, S., Naqvi, S. Z. H., Khan, M. U., &amp; Aslam, T. (2020). Electricity Theft Detection using Empirical Mode Decomposition and K-Nearest Neighbors. In <em>2020 International Conference on Emerging Trends in Smart Technologies, ICETST 2020</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/ICETST49965.2020.9080727" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/ICETST49965.2020.9080727</a>">https://doi.org/10.1109/ICETST49965.2020.9080727</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICETST49965.2020.9080727" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICETST49965.2020.9080727</a></dgdoi:pub-id>
  2. Basu, K., Debusschere, V., Douzal-Chouakria, A., &amp; Bacha, S. (2015). Time series distance-based methods for non-intrusive load monitoring in residential buildings. <em>Energy and Buildings</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enbuild.2015.03.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enbuild.2015.03.021</a>">https://doi.org/10.1016/j.enbuild.2015.03.021</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.enbuild.2015.03.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enbuild.2015.03.021</a></dgdoi:pub-id>
  3. Cody, C., Ford, V., &amp; Siraj, A. (2016). Decision tree learning for fraud detection in consumer energy consumption. In <em>Proceedings – 2015 IEEE 14th International Conference on Machine Learning and Applications, ICMLA 2015</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/ICMLA.2015.80" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/ICMLA.2015.80</a>">https://doi.org/10.1109/ICMLA.2015.80</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICMLA.2015.80" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICMLA.2015.80</a></dgdoi:pub-id>
  4. Coma-Puig, B., Carmona, J., Gavalda, R., Alcoverro, S., &amp; Martin, V. (2016). Fraud detection in energy consumption: A supervised approach. In <em>Proceedings - 3rd IEEE International Conference on Data Science and Advanced Analytics, DSAA 2016</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/DSAA.2016.19" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/DSAA.2016.19</a>">https://doi.org/10.1109/DSAA.2016.19</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/DSAA.2016.19" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/DSAA.2016.19</a></dgdoi:pub-id>
  5. Jain, S., Choksi, K. A., &amp; Pindoriya, N. M. (2019). Rule-based classification of energy theft and anomalies in consumers load demand profile. <em>IET Smart Grid</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1049/ietstg.2019.0081" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1049/ietstg.2019.0081</a>">https://doi.org/10.1049/ietstg.2019.0081</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1049/iet-stg.2019.0081" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1049/iet-stg.2019.0081</a></dgdoi:pub-id>
  6. Lyu, L., Jin, J., Rajasegarar, S., He, X., &amp; Palaniswami, M. (2017). Fog-empowered anomaly detection in IoT using hyperellipsoidal clustering. <em>IEEE Internet of Things Journal</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/JIOT.2017.2709942" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/JIOT.2017.2709942</a>">https://doi.org/10.1109/JIOT.2017.2709942</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/JIOT.2017.2709942" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/JIOT.2017.2709942</a></dgdoi:pub-id>
  7. Massaferro, P., Martino, J. M. Di, &amp; Fernandez, A. (2020). Fraud Detection in Electric Power Distribution: An Approach That Maximizes the Economic Return. <em>IEEE Transactions on Power Systems</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/TPWRS.2019.2928276" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/TPWRS.2019.2928276</a>">https://doi.org/10.1109/TPWRS.2019.2928276</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TPWRS.2019.2928276" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TPWRS.2019.2928276</a></dgdoi:pub-id>
  8. Siffer, A., Fouque, P. A., Termier, A., &amp; Largouet, C. (2017). Anomaly detection in streams with extreme value theory. In <em>Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1145/3097983.3098144" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1145/3097983.3098144</a>">https://doi.org/10.1145/3097983.3098144</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1145/3097983.3098144" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/3097983.3098144</a></dgdoi:pub-id>
  9. Spirić, J. V., Dočić, M. B., &amp; Stanković, S. S. (2015). Fraud detection in registered electricity time series. <em>International Journal of Electrical Power and Energy Systems</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijepes.2015.02.037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijepes.2015.02.037</a>">https://doi.org/10.1016/j.ijepes.2015.02.037</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.ijepes.2015.02.037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijepes.2015.02.037</a></dgdoi:pub-id>
  10. Yip, S. C., Tan, W. N., Tan, C. K., Gan, M. T., &amp; Wong, K. S. (2018). An anomaly detection framework for identifying energy theft and defective meters in smart grids. <em>International Journal of Electrical Power and Energy Systems</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijepes.2018.03.025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijepes.2018.03.025</a>">https://doi.org/10.1016/j.ijepes.2018.03.025</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.ijepes.2018.03.025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijepes.2018.03.025</a></dgdoi:pub-id>
  11. Zanetti, M., Jamhour, E., Pellenz, M., Penna, M., Zambenedetti, V., &amp; Chueiri, I. (2019). A Tunable Fraud Detection System for Advanced Metering Infrastructure Using Short-Lived Patterns. <em>IEEE Transactions on Smart Grid</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/TSG.2017.2753738" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/TSG.2017.2753738</a>">https://doi.org/10.1109/TSG.2017.2753738</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TSG.2017.2753738" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TSG.2017.2753738</a></dgdoi:pub-id>
Language: English
Page range: 543 - 551
Published on: Dec 31, 2021
Published by: The Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2021 Simona-Vasilica Oprea, Adela Bâra, Niculae Oprea, published by The Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution 4.0 License.