Have a personal or library account? Click to login
The use of artificial neural networks and big data infrastructure for predictive analytics in solar energy Cover

The use of artificial neural networks and big data infrastructure for predictive analytics in solar energy

Open Access
|Dec 2021

References

  1. Amrouche, B., & Le Pivert, X. (2014). Artificial neural network based daily local forecasting for global solar radiation, Applied Energy, 130, 333-341.10.1016/j.apenergy.2014.05.055
  2. Bahgat, A.B.G., Helwa, N.H., Ahamd, G.E., & El Shenawy, E.T. (2004). Estimation of the maximum power and normal operating power of a photovoltaic module by neural networks, Renewable Energy, 29(3), 443-457.10.1016/S0960-1481(03)00126-5
  3. Barrera, J.M., Reina, A.,Maté, A.,& Trujillo, J.C. (2020). Solar Energy Prediction Model Based on Artificial Neural Networks and Open Data, Sustainability, 12(17), 6915.10.3390/su12176915
  4. Botea, R. (2020). Energiile regenerabile au acoperit 42% din consumul de energie al României, cu 10 puncteprocentualepeste media europeană. Ziarul Financiar. https://www.zf.ro/eveniment/energiile-regenerabile-au-acoperit-42-din-consumul-de-energie-al-romanieicu-10-puncte-procentuale-peste-media-europeana-18764797.
  5. Chollet, F. (2017). Deep Learning with Python, Greenwich, CT, Manning Publications.
  6. Cococcioni, M., D’Andrea, E., & Lazzerini, B. (2011). 24-h-ahead forecasting of energy production in solar PV systems. 11th International Conference on Intelligent Systems Design and Applications, Cordoba, Spain, 1276-1281, 10.1109/ISDA.2011.6121835">http://doi.org/10.1109/ISDA.2011.6121835.10.1109/ISDA.2011.6121835
  7. European Commission. (n.d.) EU climate action and the European Green Deal. https://ec.europa.eu/clima/policies/eu-climate-action_en.
  8. European Court of Auditors. (2019). Table B – Percentage share of renewable energy in gross final energy consumption in the four Member States examined between 2010 and 2017 and trajectories until 2020. Wind and solar power for electricity generation: significant action needed if EU targets to be met. https://op.europa.eu/webpub/eca/special-reports/wind-solar-power-generation-8-2019/ro/index.html#h2table5.
  9. Fawcett, T., & Provost, F. (2013). Data Science for Business, Newton, MA: O’Relly.
  10. Gala, Y., Fernández, A.,Dorronsoro, J., García, M.,&Rodríguez, C. (2014). Machine Learning Prediction of Global Photovoltaic Energy in Spain, Renewable Energy and Power Quality Journal, 12, 605-610.10.24084/repqj12.423
  11. Hanski, J., Uusitalo, T., Vainio, H., Kunttu, S., Valkokari, P., Kortelainen, H., & Koskinen, K. (2018). Smart asset management as a service Deliverable 2.0. [pdf], Retrieved from 10.13140/RG.2.2.31027.94244">http://doi.org/10.13140/RG.2.2.31027.94244.
  12. IBM Corporation (2019). CRISP-DM Help Overview.IBM SPSS Modeler CRISP-DM Guide. https://www.ibm.com/support/knowledgecenter/SS3RA7_sub/modeler_crispdm_ddita/clementine/crisp_help/crisp_overview.html.
  13. Jarvis, A.J., Leedal, D.T., & Hewitt, C.N. (2012). Climate-society feedbacks and the avoidance of dangerous climate change, Nature Climate Change, 2, 668-671.10.1038/nclimate1586
  14. Jawaid, F., & Junejo, K.N. (2016). Predicting Daily Mean Solar Power Using Machine Learning Regression Techniques. 2016 Sixth International Conference on Innovative Computing Technology (INTECH), Dublin, Ireland, 355-360, 10.1109/INTECH.2016.7845051">http://doi.org/10.1109/INTECH.2016.7845051.10.1109/INTECH.2016.7845051
  15. Kahan, A. (2019, September 24). EIA projects nearly 50% increase in world energy usage by 2050, led by growth in Asia, U.S. Energy Information Administration. https://www.eia.gov/todayinenergy/detail.php?id=41433.
  16. Krishna, P.G., Ravi, K.S., Kishore, K.H., Veni, K.K., Rao, K.N.S.,& Prasad, R.D. (2018). Design and development of bi-directional IoT gateway using ZigBee and Wi-Fi technologies with MQTT protocol, International Journal of Engineering & Technology, 7(2.8), 125-129.10.14419/ijet.v7i2.8.10344
  17. Laouafi, A.,Mordjaoui, M., & Dib, D. (2015). One-hour ahead electric load and wind-solar power generation forecasting using artificial neural network. 6th International Renewable Energy Congress, Sousse, Tunisia, 1-6. 10.1109/IREC.2015.7110894">http://doi.org/10.1109/IREC.2015.7110894.10.1109/IREC.2015.7110894
  18. McCulloch, W.S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, 5(5), 115-133.10.1007/BF02478259
  19. Mellit, A., Benghanem, M., & Bendekhis, M. (2005). Artificial neural network model for prediction solar radiation data: Application for sizing stand-alone photovoltaic power system. 2005 IEEE Power Engineering Society General Meeting, San Francisco, CA, 1, 40-44, 10.1109/PES.2005.1489526">http://doi.org/10.1109/PES.2005.1489526.10.1109/PES.2005.1489526
  20. Mellit, A., Saglam, S., & Kalogirou, S.A. (2013). Artificial neural network-based model for estimating the produced power of a photovoltaic module, Renewable Energy, 60, 71-78.10.1016/j.renene.2013.04.011
  21. Open Power System Data. (2021). Open Power System Data: A free and open data platform for power system modelling, https://open-power-system-data.org/.
  22. Quiles, E., Roldán-Blay, C., Escrivá-Escrivá, G., & Porta, C.R. (2020). Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability, Sustainability, 12, 1274.10.3390/su12031274
  23. Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning representations by back-propagating errors, Nature, 323, 533-536.10.1038/323533a0
  24. Singh, V. (2020). 10 Benefits of Using Cloud Storage. Cloud Academy. https://cloudacademy.com/blog/10-benefits-of-using-cloud-storage/.
  25. Voon, J. (2017). Create, collect and consume: the fundamentals of the internet of things. Wired. https://www.wired.co.uk/article/create-collect-and-consume-the-fundamentals-of-iot.
Language: English
Page range: 292 - 301
Published on: Dec 31, 2021
Published by: The Bucharest University of Economic Studies
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2021 Adrian-Nicolae Buturache, Stelian Stancu, published by The Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution 4.0 License.