Abdemoula, A. K. (2015). Bank Credit Risk Analysis with K-Nearest-Neighbor Classifier: Case of Tunisian Banks. Accounting and Management Information Systems, 14(1), 79-106.
Bayraci, S., & Susuz, O. (2019). A Deep Neural Network (DNN) based Classification Model in Application to Loan Default Prediction. Theoretical and Applied Economics, XXV(4(621)), 75-84.
Çığşar, B., & Ünal, D. (2019). Comparison of Data Mining Classification Algorithms Determining the Default Risk. Scientific Programming, 1-8.10.1155/2019/8706505
Coser, A., Maer-Matei, M., & Albu, C. (2019). Predictive Models for Loan Default Risk Assessment. Economic Computation and Economic Cybernetics Studies and Research, 53, 149-165. doi:10.24818/18423264/53.2.19.09.10.24818/18423264/53.2.19.09
Green, R. F. (1976). Outlier-Prone and Outlier-Resistant Distributions. Journal of the American Statistical Association, 71(354), 502-505. doi:10.2307/2285341.10.2307/2285341
Gurný, P., & Gurný, M. (2013). Comparison of Credit Scoring Models on Probability of Default Estimation for Us Banks. Prague Economic Papers, 22(2), 163-181. doi:10.18267/j.pep.446.10.18267/j.pep.446
Härdle, W. K., Moro, R. A., & Schäfer, D. (2007). Estimating probabilities of default with support vector machines. Discussion Paper Series 2: Banking and Financial Studies, Deutsche Bundesbank.
Hadad, S., and Bratianu, C. (2019). “Dematerialization of banking products and services in the digital era”. Management & Marketing. Challenges for the Knowledge Society, Vol. 14, Issue 3, 318-337.
Kaya, M. E., Gurgen, F., & Okay, N. (2008). An Analysis of Support Vector Machines for Credit Risk Modeling. Proceedings of the 2008 conference on Applications of Data Mining in E-Business and Finance, 25-33. IOS Press.
Nh, N., & Mai, N. (2018). Naïve Bayesian Classifier and Classification Trees for the Predictive Accuracy of Probability of Default Credit Card Clients. American Journal of Data Mining and Knowledge Discovery, 3(1), 1-12. Retrieved from http://article.sciencepublishinggroup.com/pdf/10.11648.j.ajdmkd.20180301.11.pdf.
Obare, D., & Muraya, M. (2018). Comparison of Accuracy of Support Vector Machine Model and Logistic Regression Model in Predicting Individual Loan Defaults. American Journal of Applied Mathematics and Statistics, 6(6), 266-271. doi:10.12691/ajams-6-6-8.
Pop, I. D., Chicu, N., Radutu, A. (2018). “Non-performing loans decision making in the Romanian banking system”. Management & Marketing. Challenges for the Knowledge Society, Vol. 13, Issue 1, 761-776.
Sariev, E., & Germano, G. (2020). Bayesian Regularized Artificial Neural Networks for the Estimation of the Probability of Default. Quantitative Finance, 20(0), 311-328.10.1080/14697688.2019.1633014
Sharma, P. K., Haleem, H., & Ahmad, T. (2015). Improving Classification by Outlier Detection and Removal. In S. C. Satapathy, A. Govardhan, K. S. Raju, & J. K. Mandal (Ed.), Emerging ICT for Bridging the Future - Proceedings of the 49th Annual Convention of the Computer Society of India CSI Volume 2, 621-628. Cham: Springer International Publishing. doi:10.1007/978-3-319-13731-5_67.10.1007/978-3-319-13731-5_67
Smith, M. R., & Martinez, T. (2011). Improving classification accuracy by identifying and removing instances that should be misclassified. The 2011 International Joint Conference on Neural Networks, 2690-2697. San Jose, CA, USA. doi: 10.1109/IJCNN.2011.6033571.10.1109/IJCNN.2011.6033571
Tallón-Ballesteros, A. J., & Riquelme, J. C. (2014). Deleting or keeping outliers for classifier training? Sixth World Congress on Nature and Biologically Inspired Computing (NaBIC 2014), 281-286. Porto, Portugal. doi: 10.1109/NaBIC.2014.6921892.10.1109/NaBIC.2014.6921892
Turiel, J., & Aste, T. (2020). Peer-to-peer loan acceptance and default prediction with artificial intelligence. Royal Society Open Science, 7(6). doi:10.1098/rsos.191649.10.1098/rsos.191649735398432742678
Turlík, T. (2018). Neural networks and tree-based credit scoring models. Prague: Charles University, Faculty of Social Sciences, Institute of Economic Studies.