Have a personal or library account? Click to login
Using non-parametric technical data envelopment analysis - DEA, for measuring productive technical efficiency Cover

Using non-parametric technical data envelopment analysis - DEA, for measuring productive technical efficiency

By: Iulian Lita and  Tănase Stamule  
Open Access
|Jun 2018

References

  1. Aigner, D. J., Chu, S.F. (1968), On estimating the industry production function. American Economic Review, 58, 226-239.
  2. Agrell, P.J., Hatami-Marbini, A. (2013), Frontier-based performance analysis models for supply chain management: State of the art and research directions, Computers & Industrial Engineering, 66, 567-583.10.1016/j.cie.2013.02.014
  3. Alene, A. D., Manyong, V.M., Gockowski, J. (2006), The production efficiency of intercropping annual and perennial crops in southern Ethiopia: A comparison of distance functions and production frontiers, Agricultural Systems, 91, 51-70.10.1016/j.agsy.2006.01.007
  4. Asmild, M., Tam, F. (2007), Estimating global frontier shifts and global Malmquist indices, Journal of Productivity Analysis, 27, 137-148.10.1007/s11123-006-0028-0
  5. Bampatsou, C., Papadopoulos, S., Zervas, E. (2013), Technical efficiency of economic systems of EU-15 countries based on energy consumption, Energy Policy, 55(4), 426-43410.1016/j.enpol.2012.12.021
  6. Banker, R. D., Charnes, A., Cooper, W. W. (1984), Some models for estimating technical and scale inefficiencies in data envelopment analysis, Management Science, 30, 1078-1092.10.1287/mnsc.30.9.1078
  7. Charnes, A., Cooper, W.W., Rhodes, E. (1978), Measuring efficiency of decision making units, European Journal of Operational Research, 3(2), 429-444.10.1016/0377-2217(78)90138-8
  8. Charnes, A., Cooper, W.W., Schinnar, A.. (1977), Transforms and approximations in cost and production function relations, Research Report CCS 284, Austin, TX, University of Texas Center for Cybernetic Studies.
  9. Coelli, T.J., Rao, D.S.P., O’Donnell, C.J., Battese, G.E. (2005), An introduction to efficiency and productivity analysis, Springer science and business media, New York.
  10. Cooper, W.W., Seiford, L.M., Tone, K. (2000), Data Envelopment Analysis, Kluwer Academic Publishers, Boston.10.1007/b109347
  11. Dantzig, G. B., (1951), Maximization of a linear function of variables subject to linear inequalities, In T. C. Koopmans (Ed.), Activity analysis of production and allocation, New York: Wiley.
  12. Donaldson, C. (2010), The state of the art of costing health care for economic evaluation, Community Health Stud, 14, 341-356. http://dx.doi.org/10.1111/j.1753-6405.1990.tb00045.x10.1111/j.1753-6405.1990.tb00045.x
  13. Egilmez, G., Kucukvar, M., Tatari, O., Bhutta, M.K.S. (2014), Supply chain sustainability assessment of the U.S. food manufacturing sectors: A life cycle-based frontier approach, Resources, Conservation and Recycling,. 82(1),8-20.10.1016/j.resconrec.2013.10.008
  14. Farrell, M. J. (1957), The measurement of productive efficiency, Journal of the Royal Statistical Society, Series A, 120 (III), 253-281.10.2307/2343100
  15. Färe, R., Grabowski, R., Grasskopf, S., Kraft, S. (1997), Efficiency of a fixed but allocable input: A non-parametric approach, Economics Letters, 56, 187-193.10.1016/S0165-1765(97)81899-X
  16. Fried, H.O., Lovell, C.A.K., Schmidt, S.S. (1993), The Measurement of Productive Efficiency: Techniques and Applications, Oxford University Press.
  17. Halkos, G. E., Tzeremes, N. G. (2009), Exploring the existence of Kuznets curve in countries’ environmental efficiency using. DEA window analysis, Ecological Economics, 68, 2168-2176.10.1016/j.ecolecon.2009.02.018
  18. Huang, R., Li, Y., (2013), Undesirable input-output two-phase DEA model in an environmental performance audit, Mathematical and Computer Modelling, 58(9), 971-979.10.1016/j.mcm.2012.10.001
  19. Mirhedayatian, S.M., Azadi, M., Saen, R.F., (2014), A novel network data envelopment analysis model for evaluating green supply chain management, International Journal of Production Economics, 147, 544-554.10.1016/j.ijpe.2013.02.009
  20. Monchuk, D.C., Chen, Z., Bonaparte, Y. (2010), Explaining production inefficiency in China's agriculture using data envelopment analysis and semi-parametric bootstrapping, China Economic Review, 21, 346-354.10.1016/j.chieco.2010.02.004
  21. Mukherjee, K. (2008), Energy use efficiency in U.S. manufacturing: A nonparametric analysis, Energy Economics, 30(1), 76-96.10.1016/j.eneco.2006.11.004
  22. Neely, A., Gregory, M., Platts, K. (1995), Performance Measurement System Design, A literature review and research agenda, International Journal of Operation & Production Management, 15 (1995) 80-116. http://dx.doi.org/10.1108/0144357951008 362210.1108/01443579510083622
  23. Neely, A. (1999), The Performance Measurement revolution: why now and what next, International Journal of Operation & Production Management, MCB University Press, 19 (2) 205-228. http://dx.doi.org/10.1108/0144357991024743710.1108/01443579910247437
  24. Nourali, A. E., Davoodabadi, M., Pashazadeh, H. (2014), Regulation and Efficiency & Productivity Considerations in Water&Wastewater Industry: Case of Iran, Procedia Social and Behavioral Sciences, 109(1), 281-289.10.1016/j.sbspro.2013.12.458
  25. Reinhard, S., Knox Lovell, C.A., Thijssen, G.J. (2000), Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA, European Journal of Operational Research, 121, 287-303.10.1016/S0377-2217(99)00218-0
  26. Robisnon, R. (1993), Economic analysis and health care, What does it mean?, Br Med J., 307, 670-673, http://dx.doi.org/10.1136/bmj.307.6905.67010.1136/bmj.307.6905.670
  27. Scheel, H. (2001), Undesirable outputs in efficiency valuations, European Journal Of Operational Research 132, 400-410.10.1016/S0377-2217(00)00160-0
  28. Sharma, K.R., Leung, P., Zaleski, H.M. (1999), Technical, allocative and economic efficiencies in swine production in Hawaii: a comparison of parametric and nonparametric approaches, Agricultural Economics, 20, 23-35.10.1111/j.1574-0862.1999.tb00548.x
  29. Simar, L., Wilson, P.W. (2000), Statistical inference in nonparametric frontier models: the state of the art, Journal of Productivity Analysis, 13, 49-78.10.1023/A:1007864806704
  30. Song, M., An, Q., Zhang, W., Wang, Z., Wu, J. (2012), Environmental efficiency evaluation based on data envelopment analysis: A review. Renewable and Sustainable Energy Reviews, 16, 4465-4469.10.1016/j.rser.2012.04.052
  31. Sun, J., Wu, J., Guo, D. (2013), Performance ranking of units considering ideal and antiideal DMU with common weights, Applied Mathematical Modelling, 37(5/1), 6301-6310.10.1016/j.apm.2013.01.010
  32. Tzouvelekas, V, Pantzios J., Fotopoulos C. (2001), Technical efficiency of alternative farming systems: the case of Greek organic and conventional olive-growing farms, Food Policy 26, 549-569.10.1016/S0306-9192(01)00007-0
  33. Wu, F. , Fan, L. W., Zhou, P., Zhou, D. Q. (2012) , Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis, Energy Policy, 49, 164-172.10.1016/j.enpol.2012.05.035
  34. Yan, H., Wei, Q., G., H. (2002), DEA models for resource reallocation and production input/output estimation, European Journal of Operation Research, 136(1), 19-31.10.1016/S0377-2217(01)00046-7
  35. Zhou, P., Ang, B.W., Zhou, D.Q. (2012), Measuring economy-wide energy efficiency performance: A parametric frontier approach, Applied Energy, 90(2), 196-200.10.1016/j.apenergy.2011.02.025
  36. Zhu, Z. , Wang, K., Zhang, B. ( 2014 ) , Applying a network data envelopment analysis model to quantify the eco-efficiency of products: a case study of pesticides, Journal of Cleaner Production, 69, 67-73.10.1016/j.jclepro.2014.01.064
Language: English
Page range: 533 - 543
Published on: Jun 15, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Iulian Lita, Tănase Stamule, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.