Have a personal or library account? Click to login
Energy Optimal Control of Electromechanical Systems: Trade-off Demands Cover

Energy Optimal Control of Electromechanical Systems: Trade-off Demands

Open Access
|Jun 2025

References

  1. Brandstetter, P., and Dobrovsky, M. (2013). Speed Estimation of Induction Motor Using Model Reference Adaptive System with Kalman Filter. Advances in Electrical and Electronic Engineering, 11(1), 22–28. doi:10.15598/aeee.v11i1.802.
  2. Chen, B., Gao, C., Zhang, L., Chen, J., Chen, J. and Li, Y. (2023). Optimal Control Algorithm for Subway Train Operation by Proximal Policy Optimization. Applied Science, 13, p. 7456. doi: 10.3390/app13137456
  3. Franke, R., Terwiesch, P. and Meyer, M. (2000). An Algorithm for the Optimal Control of the Driving of Train.
  4. Ftorek, B., Saga, M., Orsansky, P., Vittek, J. and Butko, P. (2021). Energy Consumption Optimization for AC Drives Position Control. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 40(3), pp. 309–324. doi: 10.1108/COMPEL-10-2019-0429
  5. Heineken, W., Richter, M. and Birth-Reichert, T. (2023). Energy-Efficient Train Driving Based on Optimal Control Theory. Energies, 16(18), p. 6712. doi: 10.3390/en16186712
  6. Howlett, P. (2000). The Optimal Control of a Train. Annals of Operations Research, 98, pp. 65–87. doi: 10.1023/A:1019235819716
  7. Ichikawa, K. (1968). Application of Optimization Theory for Bounded State Variable Problems to the Operation of Train. Bulletin of Japanese Mechanical Engineering, 11, pp. 857–865. doi: 10.1299/jsme1958.11.857
  8. Novotny, D. W. and Lipo, T. A. (1996). Vector Control and Dynamics of AC Drives. Oxford: Clarendon Press.
  9. Orlowska-Kowalska, T. and Dybkowski, M. (2016). Industrial Drive Systems. Current State and Development Trends. Power Electronics and Drives, 36(1), pp. 5–25. doi: 10.5277/PED160101
  10. Perdukova, D., Fedor, P. and Timko, J. (2004). Modern Methods of Complex Drives Control. Acta Technica CSAV, 49(1), pp. 31–45. ISSN 0001-7043.
  11. Ping, L. K., You, G. Z. and Hua, M. B. (2023). Energy Optimal Control Model for Train Movements. Chinese Physics, 16, p. 359. doi: 10.1088/1009-1963/16/2/015
  12. Pontryagin, L. S. (2018) Mathematical Theory of Optimal Processes. Routledge, Abingdon-on-Thames. doi: 10.1201/9780203749319.
  13. Su, S., Tang, T. and Wang, Y. (2016). Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model. Energies, 9(2), p. 105. doi: 10.3390/en9020105
  14. Tolle, H. (1975). Optimization Methods. Berlin: Springer-Verlag.
  15. Vittek, J., Butko, P., Ftorek, B., Makyš, P. and Gorel, L. (2017a). Energy Near-Optimal Control Strategies for Industrial and Traction Drives with A.C. Motors. Mathematical Problems in Engineering, 2017, pp. 1–22. doi: 10.1155/2017/1857186
  16. Vittek, J., Gorel, L., Vavrúš, V. and Struharňanský, L. (2017b). Position Tracking Systems for AC Drives Employing Forced Dynamics Control. Power Electronics and Drives, 37(2), pp. 89–103. doi: 10.5277/PED170110
DOI: https://doi.org/10.2478/pead-2025-0012 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 177 - 188
Submitted on: Mar 3, 2025
|
Accepted on: May 27, 2025
|
Published on: Jun 21, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Branislav Ftorek, Vladimír Vavrúš, Ján Šimon, Ján Vittek, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.