Have a personal or library account? Click to login
A Novel Method to Obtain Reverse Bias I–V Curves for Single Cells Integrated in Photovoltaic Modules Cover

A Novel Method to Obtain Reverse Bias I–V Curves for Single Cells Integrated in Photovoltaic Modules

Open Access
|Aug 2024

References

  1. Aktaş, A. and Kirçiçek, Y. (2021). Chapter 1 – Solar system characteristics, advantages, and disadvantages. In: Solar Hybrid Systems-Design and Application. 1st edition, 2021. Academic Press. pp. 1–24. doi: 10.1016/B978-0-323-88499-0.00001-X.
  2. Babu, B. C., Gurjar, S. and Meher, A. (2015). Analysis of Photovoltaic (PV) Module During Partial Shading Based on Simplified Two-Diode Model. International Journal of Emerging Electric Power Systems, 16(1), pp. 15–21 doi: 10.1515/ijeeps-2014-0164.
  3. Bastidas, JD., Franco, E., Petrone, G., Ramos-Paja, CA. and Spagnuolo, G. (2013). A Model of Photovoltaic Fields in Mismatching Conditions Featuring an Improved Calculation Speed. Electric Power Systems Research, 96, pp. 81–90. doi: 10.1016/j. epsr.2012.10.020.
  4. Batzelis, E. I., Anagnostou, G., Chakraborty, C. and Pal, B. C. (2020). Computation of the Lambert W Function in Photovoltaic Modeling. Electrimacs, 604, pp. 583–595.
  5. Batzelis, E. I., Routsolias, I. A. and Papathanassiou, S. A. (2014). An Explicit PV String Model Based on the Lambert W Function and Simplified MPP Expressions for Operation Under Partial Shading. IEEE Transactions on Sustainable Energy, 5(1), pp. 301–312. doi: 10.1109/TSTE.2013.2282168
  6. Bishop, J. W. (1988). Computer Simulation of the Effects of Electrical Mismatches in Photovoltaic Cell Interconnection Circuits. Solar Cells, 25, pp. 73–89. doi: 10.1016/0379-6787(88)90059-2
  7. Ćalasan, M., Abdel, S. H. E. and Zobaa, A. F. (2020). On the Root Mean Square Error (RMSE) Calculation for Parameter Estimation Of Photovoltaic Models: A Novel Exact Analytical Solution Based on Lambert W Function. Energy Conversion and Management, 210, p. 112716. doi: 10.1016/j. enconman.2020.112716
  8. Duong, M. Q., Sava, G. N., Ionescu, G., Necula, H., Leva, S. and Mussetta, M. (2017). Optimal bypass diode configuration for PV arrays under shading influence. In: IEEE International Conference on Environment and Electrical Engineering, 06-09 June 2017, Milan, Italy: IEEE. doi: 10.1109/EEEIC.2017.7977526.
  9. Drif, M., Bahri, M. and Saigaa, D. (2021). A Novel Equivalent Circuit-Based Model for Photovoltaic Sources. Optik – International Journal for Light and Electron Optics, 242, p. 167046. doi: 10.1016/j. ijleo.2021.167046.
  10. Gallardo-Saavedra, S. and Karlsson, B. (2018). Simulation, Validation and Analysis of Shading Effects on a PV System. Solar Energy, 170, pp. 828–839. doi: 10.1016/j.solener.2018.06.035
  11. Gbadega Peter, A. and Saha, A. K. (2019). Electrical characteristics improvement of photovoltaic modules using two-diode model and its application under mismatch conditions. In: Southern African Universities Power Engineering Conference, 28–30 January 2019, Bloemfontein, South Africa: IEEE, pp. 328–333. doi: 10.1109/RoboMech.2019.8704846.
  12. Häberlin, H. (2012). Photovoltaics: System Design and Practice, 1st ed. Wiley-Interscience Publication. Chichester, West Sussex, United Kingdom.
  13. Hurkx, G. A. M., de Graaff, H. C., Kloosterman, W. J. and Knuvers, M. P. G. (1992). A New Analytical Diode Model Including Tunneling and Avalanche Breakdown. IEEE Transactions on Electronic Devices, 39(9), pp. 2090–2098. doi: 10.1109/16.155882.
  14. Ishaque, K., Salam, Z. and Taheri, H. (2011). Simulation Modelling Practice and Theory Modeling and simulation of photovoltaic system during partial shading based on a two-diode model. Simulation Modeling Practice and Theory, 19(7), pp. 1613–1626.
  15. Ishaque, K. and Salam, Z. (2013). A Review of Maximum Power Point Tracking Techniques of PV System for Uniform Insolation and Partial Shading Condition. Renewable and Sustainable Energy Reviews, 19, 475–488. doi: 10.1016/j.rser.2012.11.032.
  16. Jain, A. and Kapoor, A. (2004). Exact Analytical Solutions of the Parameters of Real Solar Cells Using Lambert W-Function. Solar Energy Materials and Solar Cells, 81, pp. 269–277. doi: 10.1016/j. solmat.2003.11.018
  17. Jain, A., Sharma, S. and Kapoor, A. (2006). Solar Cell Array Parameters Using Lambert W-Function. Solar Energy Materials and Solar Cells, 90(1), pp. 25–31. doi: 10.1016/j.solmat.2005.01.007
  18. Kadri, R., Andrei, H., Gaubert, J. P., Ivanovici, T., Champenois, G. and Andrei, P. (2012). Modeling of the Photovoltaic Cell Circuit Parameters for Optimum Connection Model and Real-Time Emulator with Partial Shadow Conditions. Energy, 42(1), pp. 57–67. doi: 10.1016/j.energy.2011.10.018
  19. Karatepe, E., Boztepe, M. and Colak, M. (2007). Development of a Suitable Model for Characterizing Photovoltaic Arrays with Shaded Solar Cells. Solar Energy, 81(8), pp. 977–992.
  20. Kim, K. A., Xu, C., Jin, L. and Krein, P. T. (2013). Photovoltaic Hot-Spot Detection for Solar Panel Substrings Using AC Parameter Characterization. IEEE Journal of Photovoltaics, 3(4), pp. 1134–1341.
  21. Kermadi, M., Chin, V. J., Mekhilef, S. and Salam, Z. (2020). A Fast and Accurate Generalized Analytical Approach for PV Arrays Modeling Under Partial Shading Conditions. Solar Energy, 208, pp. 753–765. doi: 10.1016/j.solener.2020.07.077
  22. Kreft, W., Przenzak, E. and Filipowicz, M. (2021). Photovoltaic Chain Operation Analysis in Condition of Partial Shading for Systems with and Without Bypass Diodes. Optik, 247, 167840. doi: 10.1016/j. ijleo.2021.167840
  23. Lun, S. X., Wang, S., Yang, G. H. and Guo, T. T. (2015). A New Explicit Double-Diode Modeling Method Based on Lambert W-Function for Photovoltaic Arrays. Solar Energy, 116(2015), pp. 69–82. doi: 10.1016/j.solener.2015.03.043
  24. Moreira, H. S., de Souza Silva, J. L., dos Reis, M. V. G., de Bastos Mesquita, D., de Paula, P. H. K. and Villalva, M. G. (2021). Experimental Comparative Study of Photovoltaic Models for Uniform and Partially Shading Conditions. Renewable Energy, 164, pp. 58–73. doi: 10.1016/j.renene.2020.08.086.
  25. Nehme, B., Sirdi, N. K. M., Akiki, T., Naamane, A. and Zeghondy, B. (2021). Chapter 2 – Photovoltaic Panels Life Span Increase by Control. Predictive Modelling for Energy Management and Power Systems Engineering, 1st edition, Elsevier. pp. 27–62. doi:10.1016/B978-0-12-817772-3.00002-1.
  26. Ortiz-Conde, A. and Sánchez, F. J. G. (2005). Extraction of Non-Ideal Junction Model Parameters from the Explicit Analytic Solutions of its I-V Characteristics. Solid-State Electronics, 49, pp. 465–472. doi: 10.1016/j.sse.2004.12.001
  27. Paraskevadaki, E. V., Papathanassiou, S. A. and Member, S. (2011). Evaluation of MPP Voltage and Power of mc-Si PV Modules in Partial Shading Conditions. IEEE Transactions on Energy Conversion, 26(3), 923–932. doi: 10.1109/TEC.2011.2126021.
  28. Patel, H. and Agarwal, V. (2008). MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics. IEEE Transactions On Energy Conversion, 23(1), pp. 302–310. doi: 10.1109/TEC.2007.914308.
  29. Peng, L., Sun, Y. and Meng, Z. (2013). An Improved Model of Photovolatic Cell Using Lambert W Function. Applied Mechanics and Materials, 370, pp. 1196–1200.
  30. Petrone, G., Spagnuolo, G. and Vitelli, M. (2007). Analytical Model of Mismatched Photovoltaic Fields by Means of Lambert W-Function. Solar Energy Materials and Solar Cells, 91(18), pp. 1652–1657.
  31. Petrone, G. and Ramos-Paja, C. (2011). Modeling of Photovoltaic Fields in Mismatched Conditions for Energy Yield Evaluations. Electric Power Systems Research, 81, pp. 1003–1013. doi: 10.1016/j. epsr.2010.12.008.,
  32. Petrone, G., Ramos-Paja, C. A. and Spagnuolo, G. (2017). Photovoltaic Sources Modeling. John Wiley & Sons Ltd. Chichester, West Sussex, United Kingdom.
  33. Picault, D., Raison, B., Bacha, S., de la Casa, J. and Aguilera, J. (2010). Forecasting Photovoltaic Array Power Production Subject to Mismatch Losses. Solar Energy, 84(7), pp. 1301–1309.
  34. Quashning, V. (2005). Understanding Renewable Energy. Earth Scan: London, UK.
  35. Quashning, V. and Hanitsch, R. (1996). Numerical Simulation of Current-Voltage Characteristics of Photovoltaic Systems with Shaded Solar Cells. Solar Energy, 56(6), pp. 513–520.
  36. Ramabadran, R. (2009). MATLAB Based Modelling and Performance Study of Series Connected SPVA Under Partial Shaded Conditions. Journal of Sustainable Development, 2(3), pp. 85–94.
  37. Rathee, R. (2013). Comparative Analysis to Study the Effects of Partial Shading on PV Array with LT-Spice and Matlab/Simulink Environment. International Journal of Engineering Research and Technology (IJERT), 2(5), pp. 1505–1508.
  38. Roibás-Millán, E., Cubero-Estalrrich, J. L., Gonzalez-Estrada, A., Jado-Puente, R., Sanabria-Pinzón, M., Alfonso-Corcuera, D., Álvarez, J. M., Cubas, J. and Pindado, S. (2020). Lambert W-Function Simplified Expressions for Photovoltaic Current-Voltage Modelling. In: IEEE International Conference on Environment and Electrical Engineering, 09–12 June 2020, Madrid, Spain: IEEE, pp. 1–6. doi: 10.1109/EEEIC/ICPSEurope49358.2020.9160734.
  39. Roger, A. and Maguin, C. (1982). Photovoltaic Solar Panel Simulation Including Dynamical Thermal Effects. Solar Energy, 29(3), pp. 245–256. doi: 10.1016/0038-092X(82)90210-9.
  40. Samer, S., Ahmed, B. M. and Shehab, A. (2012). A Matlab/Simulink-Based Photovoltaic Array Model Employing Simpowersystems Toolbox. Journal of Energy and Power Engineering, 6(12), pp. 1965–1975.
  41. Subramanian, Y. and Darling, R. B. (2001). Compact Modeling of Avalanche Breakdown in pn-Junctions for Computer-aided ESD Design (CAD for ESD). In: Proceedings International Conference on Modeling and Simulation of Microsystems, 19-21 March, 2001, South Carolina, USA. Vol. (1). pp. 48–51.
  42. Tripathy, M., Kumar, M. and Sadhu, P. K. (2017). Photovoltaic System using Lambert W Function-Based Technique. Solar Energy, 158, pp. 432–439. doi: 10.1016/j.solener.2017.10.007
  43. Varshney, S. K., Khan, Z. A., Husain, M. A. and Tariq, A. (2016). A comparative study and investigation of different diode models incorporating the partial shading effects. In: International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 03–05 March 2016, Chennai, India: IEEE, pp. 3145–3150. doi: 10.1109/ICEEOT.2016.7755281.
  44. Villalva, M., Gazoli, J. and Filho, E. (2009). Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Transactions on Power Electronics, 24(5), pp. 1198–1208. doi: 10.1109/TPEL.2009.2013862.
  45. Wang, Y. and Hsu, P. (2009). Analytical Modelling of Partial Shading and Different Orientation of Photovoltaic Modules. IET Renewable Power Generation, 4(3), pp. 272–282. doi: 10.1049/ietrpg.2009.0157.
  46. Wei, W., Ning, L. and Shaoyuan, L. (2012). A Real-time Modeling of Photovoltaic Array. Chinese Journal of Chemical Engineering, 20(6), pp. 1154–1160. doi: 10.1016/S1004-9541(12)60601-6.
  47. Yin, O. W. and Babu, B. C. (2018). Simple and Easy Approach for Mathematical Analysis of Photovoltaic (PV) Module Under Normal and Partial Shading Conditions. Optik – International Journal for Light and Electron Optics, 169, pp. 48–61. doi: 10.1016/j. ijleo.2018.05.037.
DOI: https://doi.org/10.2478/pead-2024-0027 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 412 - 427
Submitted on: Apr 27, 2024
Accepted on: Jun 25, 2024
Published on: Aug 1, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Mahmoud Drif, Ahmed Bouchelaghem, Abderezak Guemache, Djoubair Abdelouahab Benhamadouche, Djamel Saigaa, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.