Have a personal or library account? Click to login
Model Reference Adaptive Control of SPS-Based Dual Active Bridge Converter with Constant Power Loading Cover

Model Reference Adaptive Control of SPS-Based Dual Active Bridge Converter with Constant Power Loading

Open Access
|Jun 2024

References

  1. AL-Nussairi, M. K., Bayindir, R., Padmanaban, S., Mihet-Popa, L. and Siano, P. (2017). Constant Power Loads (CPL) with Microgrids: Problem Definition, Stability Analysis and Compensation Techniques. Energies, 10(10), p. 1656. doi: 10.3390/en10101656.
  2. Brando, G., Del Pizzo, A. and Meo, S. (2018). Modelreference adaptive control of a dual active bridge DC-DC converter for aircraft applications. In: SPEEDAM 2018 - Proceedings: International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 20–22 June 2018, Amalfi, Italy: IEEE, pp. 502–506. doi: 10.1109/SPEEDAM.2018.8445242.
  3. Csizmadia, M. and Kuczmann, M. (2022) Extended Feedback Linearisation Control of Non-ideal DCDC Buck Converter in Continuous-conduction Mode, Power Electronics and Drives, 7(42), pp. 1–8. doi: 10.2478/pead-2022-0001.
  4. Do, T. A., Nguyen, Q. D. and Vu, P. (2024). Design and Implementation of a Current-FED Dual Active Bridge Converter for an AC Battery. Journal of Electrical Engineering, 75(1), pp. 47–55. doi: 10.2478/jee-2024-0007.
  5. Dragičević, T., Lu, X., Vasquez, J. C. and Guerrero, J. M. (2016). DC Microgrids – Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Transactions on Power Electronics, 31(7), pp. 4876–4891. doi: 10.1109/TPEL.2015.2478859.
  6. Hajji, S., Zayani, H., Bouaziz, N. and Ben Chehida, R. (2020). Sensorless Induction Motor Drive Based on Model Reference Adaptive System Scheme Utilising a Fictitious Resistance. Power Electronics and Drives, 5(41), pp. 199–213. doi: 10.2478/pead-2020-0015.
  7. He, J., Chen, Y., Lin, J., Chen, J., Cheng, L. and Wang, Y. (2023). Review of Modeling, Modulation, and Control Strategies for the Dual-Active-Bridge DC/DC Converter. Energies, 16(18), p. 6646. doi: 10.3390/en16186646.
  8. Hossain, M. Z., Rahim, N. A. and Selvaraj, J. (2018). Recent Progress and Development on Power DC-DC Converter Topology, Control, Design and Applications: A Review. Renewable and Sustainable Energy Reviews, 81(Part 1), pp. 205–230. doi: 10.1016/j.rser.2017.07.017.
  9. Iqbal, M. T., Maswood, A. I., Dehghani Tafti, H., Tariq, M. and Bingchen, Z. (2020). Explicit Discrete Modelling of Bidirectional Dual Active Bridge DC-DC Converter using Multi-Time Scale Mixed System Model. IET Power Electronics, 13(18), pp. 4252–4260. doi: 10.1049/iet-pel.2020.0293.
  10. Leonard, J. P. (2014). Nonlinear Modeling of DC Constant Power Loads with Frequency Domain Volterra Kernels. Available at: https://diginole.lib.fsu.edu/islandora/object/fsu%3A252857.
  11. Liutanakul, P., Awan, A. and Pierfederici, S. (2010). Linear Stabilization of a DC Bus Supplying a Constant Power Load: A General Design Approach. IEEE Transactions on Power Electronics, 25(2), pp. 475–488. doi: 10.1109/TPEL.2009.2025274.
  12. Lucas, K. E., Pagano, D. J., Plaza, D. A., Vaca-Benavides, D. A. and Ríos, S. J. (2020). Robust Feedback Linearization Control for DAB Converter Feeding a CPL. IFAC-PapersOnLine, 53(2), pp. 13402–13409. doi: 10.1016/j.ifacol.2020.12.178.
  13. Meng, X., Jia, Y., Xu, Q., Ren, C., Han, X. and Wang, P. (2023). A Novel Intelligent Nonlinear Controller for Dual Active Bridge Converter with Constant Power Loads. IEEE Transactions on Industrial Electronics, 70(3), pp. 2887–2896. doi: 10.1109/TIE.2022.3170608.
  14. Mueller, J. A. and Kimball, J. W. (2018). An Improved Generalized Average Model of DC-DC Dual Active Bridge Converters. IEEE Transactions on Power Electronics, 33(11), pp. 9975–9988. doi: 10.1109/TPEL.2018.2797966.
  15. Qin, H. and Kimball, J. W. (2012). Generalized Average Modeling of Dual Active BRIDGE DCDC Converter. IEEE Transactions on Power Electronics, 27(4), pp. 2078–2084. doi: 10.1109/TPEL.2011.2165734.
  16. Radwan, A. A. A. and Mohamed, Y. A. R. I. (2012). Linear Active Stabilization of Converter-Dominated DC Microgrids. IEEE Transactions on Smart Grid, 3(1), pp. 203–216. doi: 10.1109/TSG.2011.2162430.
  17. Rahimi, A. M., Williamson, G. A. and Emadi, A. (2010). Loop-Cancellation Technique: A Novel Nonlinear Feedback to Overcome the Destabilizing Effect of Constant-Power Loads. IEEE Transactions on Vehicular Technology, 59(2), pp. 650–661. doi: 10.1109/TVT.2009.2037429.
  18. Rahimi, A. M. and Emadi, A. (2009). Active Damping in DC/DC Power Electronic Converters: A Novel Method to Overcome the Problems of Constant Power Loads. IEEE Transactions on Industrial Electronics, 56(5), pp. 1428–1439. doi: 10.1109/TIE.2009.2013748.
  19. Shah, S. S. and Bhattacharya, S. (2017). Large & small signal modeling of dual active bridge converter using improved first harmonic approximation. In: Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition (APEC), 26–30 March 2017, Tampa, FL, USA: IEEE, pp. 1175–1182. doi: 10.1109/APEC.2017.7930844.
  20. Shao, S., Chen, L., Shan, Z., Gao, F., Chen, H., Sha, D. and Dragičević, T. (2022). Modeling and Advanced Control of Dual-Active-Bridge DCDC Converters: A Review. IEEE Transactions on Power Electronics, 37(2), pp. 1524–1547. doi: 10.1109/TPEL.2021.3108157.
  21. Singh, S., Fulwani, D. and Kumar, V. (2015). Robust Sliding-Mode Control of DC/DC Boost Converter Feeding a Constant Power Load. IET Power Electronics, 8(7), pp. 1230–1237. doi: 10.1049/IET-PEL.2014.0534.
  22. Veeramraju, K. J. P., Cardoza, A., Sarangapani, J. and Kimball, J. W. (2022). Robust modifications to model reference adaptive control for reference voltage tracking in a dual active bridge DC-DC converter. In: 2022 IEEE Energy Conversion Congress and Exposition (ECCE), 09–13 October 2022, Detroit, MI, USA: IEEE. doi: 10.1109/ECCE50734.2022.9947779.
  23. Wang, J. and Howe, D. (2008). A Power Shaping Stabilizing Control Strategy for DC Power Systems with Constant Power Loads. IEEE Transactions on Power Electronics, 23(6), pp. 2982–2989. doi: 10.1109/TPEL.2008.2004594.
  24. Wu, J. and Lu, Y. (2019). Adaptive Backstepping Sliding Mode Control for Boost Converter With Constant Power Load. IEEE Access, 7, pp. 50797–50807. doi: 10.1109/ACCESS.2019.2910936.
  25. Wu, M. and Lu, D. D. C. (2015). A Novel Stabilization Method of LC Input Filter with Constant Power Loads Without Load Performance Compromise in DC Microgrids. IEEE Transactions on Industrial Electronics, 62(7), pp. 4552–4562. doi: 10.1109/TIE.2014.2367005.
  26. Yousefizadeh, S., Bendtsen, J. D., Vafamand, N., Khooban, M. H., Blaabjerg, F. and Dragičević, T. (2019). Tracking Control for a DC Microgrid Feeding Uncertain Loads in More Electric Aircraft: Adaptive Backstepping Approach. IEEE Transactions on Industrial Electronics, 66(7), pp. 5644–5652. doi: 10.1109/TIE.2018.2880666.
  27. Zhang, Y., Wang, Y., Ni, K. and Hu, Y. (2020). Bidirectional DC–AC Converter-Based Communication Solution for Microgrid. Power Electronics and Drives, 5(1), pp. 177–188. doi: 10.2478/pead-2020-0013.
  28. Zorgani, Y. A., Jouili, M., Koubaa, Y. and Boussak, M. (2019). A Very-Low-Speed Sensorless Control Induction Motor Drive with Online Rotor Resistance Tuning by Using MRAS Scheme. Power Electronics and Drives, 4(39), pp. 125–140. doi: 10.2478/pead-2018-0021.
DOI: https://doi.org/10.2478/pead-2024-0022 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 348 - 357
Submitted on: Feb 14, 2024
|
Accepted on: May 23, 2024
|
Published on: Jun 19, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Emmanuel K. Effah, Emmanuel K. Anto, Philip Y. Okyere, Francis B. Effah, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.