Have a personal or library account? Click to login
Constrained Series PI, PID and PIDA Controller Design Inspired by Ziegler–Nichols Cover

Constrained Series PI, PID and PIDA Controller Design Inspired by Ziegler–Nichols

Open Access
|Jun 2024

References

  1. Agwa, A., Elsayed, S. and Ahmed, M. (2021). Design of Optimal Controllers for Automatic Voltage Regulation Using Archimedes Optimizer. Intelligent Automation and Soft Computing, 31, pp. 799–815. doi: 10.32604/iasc.2022.019887.
  2. Alfaro, V. M. and Vilanova, R. (2013). Robust Tuning of 2DoF Five-Parameter PID Controllers for Inverse Response Controlled Processes. Journal of Process Control, 23, pp. 453–462. doi: 10.1016/j. jprocont.2013.01.005.
  3. Arulvadivu, J., Manoharan, S., Lal Raja Singh, R. and Giriprasad, S. (2022). Optimal Design of Proportional Integral Derivative Acceleration Controller for Higher-order Nonlinear Time Delay System using m-MBOA Technique. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 35. doi: 10.1002/jnm.3016.
  4. Astrom, K. J., Panagopoulos, H. and Hagglund, T. (1998). Design of PI Controllers based on Non-Convex Optimization. Automatica, 34, pp. 585–601. doi: 10.1016/S0005-1098(98)00011-9.
  5. Astrom, K. J. and Hagglund, T. (1995). PID Controllers: Theory, Design, and Tuning, 2nd ed. NC: Instrument Society of America, Research Triangle Park.
  6. Åström, K. J. and Hägglund, T. (2004). Revisiting the Ziegler-Nichols Step Response Method for PID Control. Journal of Process Control, 14, pp. 635–650. doi: 10.1016/j.jprocont.2004.01.002.
  7. Astrom, K. J. and Hagglund, T. (2006). Advanced PID Control. NC: ISA, Research Triangle Park.
  8. Bansal, S. (2021). Nature-Inspired Hybrid Multi-objective Optimization Algorithms in Search of Near-OGRs to Eliminate FWM Noise Signals in Optical WDM Systems and their Performance Comparison. Journal of the Institution of Engineers (India) Series B, 102. doi: 10.1007/s40031-021-00587-5.
  9. Bistak, P., Huba, M., Chamraz, S. and Vrancic, D. (2023). IPDT Model-Based Ziegler-Nichols Tuning Generalized to Controllers with Higher-order Derivatives. Sensors, 23, p. 3787. doi: 10.3390/s23083787.
  10. Bistak, P., Huba, M. and Vrancic, D. (2024). Practice-Oriented Controller Design for an Inverse-Response Process: Heuristic Optimization Versus Model-Based Approach. Applied Sciences, 14, p. 2890. doi: 10.3390/app14072890.
  11. Borase, R., Maghade, D. K., Sondkar, S. Y. and Pawar, S. (2021). A Review of PID Control, Tuning Methods and Applications. International Journal of Dynamics and Control, 9, pp. 818–827. doi: 10.1007/s40435-020-00665-4.
  12. Boskovic, M. C., Sekara, T. B. and Rapaic, M. R. (2020). Novel Tuning Rules for PIDC and PID Load Frequency Controllers Considering Robustness and Sensitivity to Measurement Noise. International Journal of Electrical Power and Energy Systems, 114, p. 105416. doi: 10.1016/j.ijepes.2019.105416.
  13. Briežnik, J., Zakova, K. and Huba, M. (2023). Filament dryer for FDM 3D printing. In: Proceedings of the 2023 International Conference on Electrical Drives and Power Electronics (EDPE), pp. 1–7. doi: 10.1109/EDPE58625.2023.10274024.
  14. Buriakovskyi, S., Asmolova, L. V., Maslii, A. S., Maslii, A. S. and Obruch, I. (2022). Development and Study of a Microprocessor Automatic Control System for a Mono-Switch Tie Type with a Linear Inductive Electric Motor and a Discrete Speed Controller. Electrical Engineering and Electromechanics, pp. 3–9. doi: 10.20998/2074-272X.2022.5.01.
  15. Calasan, M., Micev, M., Radulovic, M., Zobaa, A. F., Hasanien, H. M. and Abdel Aleem, S. H. E. (2021). Optimal PID Controllers for AVR System Considering Excitation Voltage Limitations Using Hybrid Equilibrium Optimizer. Machines, 9, p. 265. doi: 10.3390/machines9110265.
  16. Emiroglu, S. and Gumus, T. (2022). Optimal Control of Automatic Voltage Regulator System with Coronavirus Herd Immunity Optimizer Algorithm-Based PID plus Second Order Derivative Controller. Academic Platform Journal of Engineering and Smart Systems, 10, pp. 174–183. doi: 10.21541/apjess.1149455.
  17. Fawwaz, M. A., Bingi, K., Ibrahim, R., Devan, P. A. M. and Prusty, B. R. (2023). Design of PIDDα Controller for Robust Performance of Process Plants. Algorithms, 16, p. 437. doi: 10.3390/a16090437.
  18. Ferrari, M. and Visioli, A. (2022). A Software Tool to Understand the Design of PIDA Controllers. IFAC-PapersOnLine, 55, pp. 249–254. 13th IFAC Symposium on Advances in Control Education ACE 2022. doi: 10.1016/j.ifacol.2022.09.287.
  19. Follinger, O. (1993). Nichtlineare Regelungen. Munchen: R. Oldenbourg Verlag.
  20. Glattfelder, A. and Schaufelberger, W. (2003). Control Systems with Input and Output Constraints. Berlin: Springer.
  21. Haddad, W. M. and Chellaboina, V. (2011). Nonlinear Dynamical Systems and Control: a Lyapunov-Based Approach. Princeton University Press.
  22. Hägglund, T. and Åström, K. J. (2002). Revisiting the Ziegler-Nichols Tuning Rules for PI Control. Asian Journal of Control, 4(4), pp. 364–380. doi: 10.1111/j.1934-6093.2002.tb00076.x.
  23. Hanus, R., Kinnaert, M. and Henrotte, J. (1987). Conditioning Technique, a General Anti-Windup and Bumpless Transfer Method. Automatica, 23, pp. 729–739. doi: 10.1016/0005-1098(87)90029-X.
  24. Huba, M., Bistak, P. and Vrancic, D. (2023a). Series PID Control with Higher-order Derivatives for Processes Approximated by IPDT Models. IEEE Transactions on Automation Science and Engineering, pp. 1–13. doi: 10.1109/TASE.2023.3296201.
  25. Huba, M., Bistak, P. and Vrancic, D. (2023b). Parametrization and Optimal Tuning of Constrained Series PIDA Controller for IPDT Models. Mathematics, 11(20), p. 4229. doi: 10.3390/math11204229.
  26. Huba, M., Bistak, P. and Vrancic, D. (2023c). Series PIDA Controller Design for IPDT Processes. Applied Sciences, 13, p. 2040. doi: 10.3390/app13042040.
  27. Huba, M., Chamraz, S., Bistak, P. and Vrancic, D. (2021a). Making the PI and PID Controller Tuning Inspired by Ziegler and Nichols Precise and Reliable. Sensors, 18, p. 6157. doi: 10.3390/s21186157.
  28. Huba, M., Vrancic, D. and Bistak, P. (2021b). PID Control with Higher Order Derivative Degrees for IPDT Plant Models. IEEE Access, 9, pp. 2478–2495. doi: 10.1109/ACCESS.2020.3047351.
  29. Jung, S. and Dorf, R. C. (1996a). Novel Analytic Technique for PID and PIDA Controller Design. IFAC Proceedings Volumes, 29, pp. 1146–1151. 13th World Congress of IFAC, 1996, San Francisco USA, 30 June–5 July. doi: 10.1016/S1474-6670(17)57819-2.
  30. Jung, S. and Dorf, R. C. (1996b). Analytic PIDA controller design technique for a third order system. In: Proceedings of the 35th IEEE Conference on Decision and Control, Vol. 3, pp. 2513–2518 vol. 3.
  31. Khalil, H. (1996). Nonlinear Systems, 2nd ed. London: Prentice Hall.
  32. Kothare, M. V., Campo, P. J., Morari, M. and Nett, C. V. (1994). A Unified Framework for the Study of Anti-windup Designs. Automatica, 30, pp. 1869–1883. doi: 10.1016/0005-1098(94)90048-5.
  33. Kumar, M., Hote, Y. V. and Sikander, A. (2023). A novel cascaded CDM-IMC based PIDA controller design and its application. In: Proceedings of the 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT), 11–12 March 2023, Male, Maldives: IEEE, pp. 1–7. doi: 10.1109/GlobConHT56829.2023.10087714.
  34. Kumar, M. and Hote, Y. V. (2021a). Robust PIDD2 Controller Design for Perturbed Load Frequency Control of an Interconnected Time-Delayed Power Systems. IEEE Transactions on Control Systems Technology, 29, pp. 2662–2669. doi: 10.1109/TCST.2020.3043447.
  35. Kumar, M. and Hote, Y. V. (2021b). Real-Time Performance Analysis of PIDD2 Controller for Nonlinear Twin Rotor TITO Aerodynamical System. Journal of Intelligent and Robotic Systems: Theory and Applications, 101. doi: 10.1007/s10846-021-01322-4.
  36. Kumar, M. and Hote, Y. V. (2021c). PIDD2 controller design based on internal model control approach for a non-ideal DC-DC boost converter. In: Proceedings of the 2021 IEEE Texas Power and Energy Conference (TPEC), 02–05 February 2021, College Station, TX, USA: IEEE. doi: 10.1109/TPEC51183.2021.9384954.
  37. Lima, T. A. (2021). Contributions to the Control of Input-Saturated Systems: Time Delay and allocation Function Cases. Fortaleza: Universidade Federal Do Ceara.
  38. Micev, M., Ćalasan, M. and Radulović, M. (2021). Optimal design of real PID plus second-order derivative controller for AVR system. In: Proceedings of the 2021 25th International Conference on Information Technology (IT), 16–20 February 2021, Zabljak, Montenegro: IEEE, pp. 1–4. doi: 10.1109/IT51528.2021.9390145.
  39. Oladipo, S., Sun, Y. and Wang, Z. (2021). An effective hFPAPFA for a PIDA-based hybrid loop of Load Frequency and terminal voltage regulation system. In Proceedings of the 2021 IEEE PES/IAS PowerAfrica, 23–27 August 2021, Nairobi, Kenya: IEEE, pp. 1–5. doi: 10.1109/PowerAfrica52236.2021.9543348.
  40. Oldenbourg, R. and Sartorius, H. (1944). Dynamik selbsttatiger Regelungen. Munchen: R.Oldenbourg-Verlag.
  41. Popov, V. (1961). On the Absolute Stability of Nonlinear Control Systems. Avtom. i telemekhanika, 22(8), pp. 961–979.
  42. Sahib, M. A. (2015). A Novel Optimal PID Plus Second Order Derivative Controller for AVR System. Engineering Science and Technology, an International Journal, 18, pp. 194–206. doi: 10.1016/j.jestch.2014.11.006.
  43. Saxena, S. and Biradar, S. (2022). Fractional-order IMC Controller for High-Order System using Reduced-Order Modelling via Big-Bang, Big-Crunch Optimisation. International Journal of Systems Science, 53, pp. 168–181. doi: 10.1080/00207721.2021.1942587.
  44. Takahashi, Y., Chan, C. and Auslander, D. (1971). Parametereinstellung bei linearen DDCAlgorithmen. Regelungstechnik, 19, pp. 237–244.
  45. Tepljakov, A., Alagoz, B. B., Yeroglu, C., Gonzalez, E., HosseinNia, S. H. and Petlenkov, E. (2018). FOPID Controllers and Their Industrial Applications: A Survey of Recent Results. IFAC-PapersOnLine, 51, pp. 25–30. 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Control PID 2018. doi: 10.1016/j.ifacol.2018.06.014.
  46. Thomson, D. and Padula, F. (2022). Introduction to Fractional-Order Control: A Practical Laboratory Approach. IFAC-PapersOnLine, 55, pp. 126–131. 13th IFAC Symposium on Advances in Control Education ACE 2022. doi: 10.1016/j. ifacol.2022.09.268.
  47. Ukakimaparn, P., Pannil, P., Boonchuay, P. and Trisuwannawat, T. (2009). PIDA controller designed by Kitti’s method. In Proceedings of the 2009 ICCAS-SICE, 18–21 August 2009, Fukuoka, Japan: IEEE, pp. 1547–1550.
  48. Veinovic, S., Stojic, D. and Ivanovic, L. (2023). Optimized PIDD2 Controller for AVR Systems Regarding Robustness. International Journal of Electrical Power and Energy Systems, 145, p. 108646. doi: 10.1016/j.ijepes.2022.108646.
  49. Visioli, A. and Sánchez-Moreno, J. (2022). A Relay-Feedback Automatic Tuning Methodology of PIDA Controllers for High-Order Processes. International Journal of Control, 0, pp. 1–8.
  50. Viteckova, M. and Vitecek, A. (2016). 2DOF PID controller tuning for integrating plants. In: 2016 17th International Carpathian Control Conference (ICCC), 29 May 2016–01 June 2016, High Tatras, Slovakia: IEEE, pp. 793–797. doi: 10.1109/CarpathianCC.2016.7501204.
  51. Zandavi, S. M., Chung, V. and Anaissi, A. (2022). Accelerated Control Using Stochastic Dual Simplex Algorithm and Genetic Filter for Drone Application. IEEE Transactions on Aerospace and Electronic Systems, 58, pp. 2180–2191. doi: 10.1109/TAES.2021.3134751.
  52. Ziegler, J. G. and Nichols, N. B. (1942). Optimum Settings for Automatic Controllers. Transactions of the ASME, 64, pp. 759–768.
DOI: https://doi.org/10.2478/pead-2024-0021 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 331 - 346
Submitted on: Dec 30, 2023
Accepted on: May 22, 2024
Published on: Jun 29, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Mikulas Huba, Pavol Bistak, Jan Brieznik, Damir Vrancic, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.