Have a personal or library account? Click to login
An Impact of Switching Frequency and Model Accuracy on Model Predictive Current Control Performance for Reluctance Synchronous Motors Cover

An Impact of Switching Frequency and Model Accuracy on Model Predictive Current Control Performance for Reluctance Synchronous Motors

Open Access
|Mar 2024

References

  1. Awan, H.A.A., Saarakkala, S.E. and Hinkkanen, M., (2019) ”Flux-Linkage-Based Current Control of Saturated Synchronous Motors,” IEEE Trans. Ind. Applicat., vol. 55, no. 5, pp. 4762–4769, doi: 10.1109/TIA.2019.2919258.
  2. Boldea, I. and Tutelea, L. (2018) ”Reluctance Electric Machines: Design and Control”, CRC Press, Taylor & Francis Group
  3. Farhan, A., Abdelrahem, M., Saleh, A., Shaltout, A. and Kennel, R. (2020) ”Simplified Sensorless Current Predictive Control of Synchronous Reluctance Motor Using Online Parameter Estimation”, Energies, 13, 492.
  4. Jackiewicz K. M. (2023), “Sterowanie powtarzalne momentum elektromagnetycznym w układzie napędowym z maszyną reluktancyjną przełączalną”, PhD. Diploma thesis, Warsaw University of Technology (in Polish)
  5. Kumar G.V., Chuang C.H., Lu M.Z, Liaw C.M., (2020) „Development of an Vehicle Synchronous Reluctance Motor Drive”, IEEE Transactions on Vehicular Technology, vol. 69, pp. 5012–5024, doi:10.1109/TVT.2020.2983546
  6. Mahmoud, H., Bacco, G., Degano, M., Bianchi, N. and Gerada, C. (2018) ”Synchronous Reluctance Motor Iron Losses: Considering Machine Non-linearity at MTPA, FW, and MTPV Operating Conditions,” IEEE Trans. Energy Convers, vol. 33, no. 3, pp. 1402–1410, doi: 10.1109/TEC.2018.2811543.
  7. Manuel, N. and Inanc, N. (2022) ”Sliding Mode Control-Based MPPT and Output Voltage Regulation of a Stand-alone PV System”, Power Electronics and Drives, vol. 7, no. 1, pp. 159–173.
  8. Niedworok, A. and Orzech, Ł. (2016) ”Assessment of efficiency of drive equipped with induction motor and drive equipped with reluctance motor”, Przeglad Elektrotechniczny, R. 92 NR 8/2016, pp. 246–250 (in Polish).
  9. Niewiara, Ł.J., Tarczewski, T., Gierczyński, M., Grzesiak, L.M (2023a), „Designing a Hybrid State Feedback Control Structure for a Drive With a Reluctance Synchronous Motor, IEEE Trans. on Industrial Electronics, pp. 1–11, doi:10.1109/TIE.2023.3319726
  10. Niewiara, Ł.J., Gierczyński, M., Tarczewski, T., Grzesiak, L.M (2023b), „Practical approach for identification and dynamic modeling of reluctance synchronous motors’ electrical circuit”, The 16th Conference Control in Power Electronics and Electric Drives (SENE 2023), Łódź, Poland
  11. Scokaert, P.O.M. and Mayne, D.Q. (1998) ”Min-max feedback model predictive control for constrained linear systems,” IEEE Trans. Automat., vol. 43, no. 8, pp. 1136–1142, doi: 10.1109/9.704989.
  12. Surus, R., Niewiara, L.J., Tarczewski, T., Grzesiak L.M. (2022) ”Finite control set model predictive current control for reluctance synchronous motor,” in Proc. IEEE 20th Int. PEMC Conf., Brasov, Romania, pp. 235–242, doi: 10.1109/PEMC51159.2022.9962908.
  13. Surus, R., Tejer, M, Niewiara, L.J, Tarczewski, T. (2023) „An Impact of Model Accuracy on Control Performance in Finite Control Set Model Predictive Current Control for Reluctance Synchronous Motor”, 2023 International Conference on Electrical Drives and Power Electronics (EDPE), The High Tatras, Slovakia, 2023, pp. 1–7, doi:10.1109/EDPE58625.2023.10274040,
  14. Sustainable Transport, Electrifying the powertrains of industrial vehicles, transportation and marine -ABB white paper
  15. Tarczewski, T., Niewiara, Ł. and Grzesiak, L.M, (2021a) ”Artificial Neural Network-Based Gain-Scheduled State Feedback Speed Controller for Synchronous Reluctance Motor”, Power Electronics and Drives, vol. 6, no. 1, pp. 276–288,
  16. Tarczewski, T., Niewiara, L.J. and Grzesiak, L.M (2021b) ”Gain-Scheduled State Feedback Speed Control of Synchronous Reluctance Motor,” in Proc. IEEE 19th Int. PEMC Conf., Gliwice, Poland, pp. 559–565, doi: 10.1109/PEMC48073.2021.9432549.
  17. Wang, F., Mei, X., Rodriguez, J. and Kennel R. (2017) ”Model predictive control for electrical drive systems-an overview,” CES Trans. on Electrical Machines and Systems, vol. 1, no. 3, pp. 219–230, doi: 10.23919/TEMS.2017.8086100.
  18. Wang, H. and Zhang, H. (2021) ”An Adaptive Control Strategy for a Low-Ripple Boost Converter in BLDC Motor Speed Control”, Power Electronics and Drives, vol. 6, no. 1, pp. 242–259.
  19. Wróbel, K., Serkies, P. and Szabat, K. (2020) ”Model Predictive Base Direct Speed Control of Induction Motor Drive-Continuous and Finite Set Approaches”, Energies, 13, 1193
  20. Yamamoto, S., Tomishige, K. and Ara, T. (2005) ”A method to calculate transient characteristics of synchronous reluctance motors considering iron loss and cross-magnetic saturation,” in Proc. 14th IAS Annual Meeting Conf. IA Conf., Hong Kong, China, pp. 1754–1761 Vol. 3, doi:10.1109/IAS.2005.1518684.
  21. Yamamoto, Y., Morimoto, S. Sanada, M. Inoue, Y. (2018) ”Torque Ripple Reduction Using Asymmetric Flux Barriers in Synchronous Reluctance Motor,” in Proc. Int. IPEC-Niigata 2018 -ECCE Asia Conf., Niigata, Japan, pp. 3197–3202, doi: 10.23919/IPEC.2018.8507655.
  22. Zhang, X., Sun, L., Zhao, K. and Sun, L. (2013) ”Nonlinear Speed Control for PMSM System Using Sliding-Mode Control and Disturbance Compensation Techniques,” IEEE Trans. Pow. Electron., vol. 28, no. 3, pp. 1358–1365, doi: 10.1109/TPEL.2012.2206610.
DOI: https://doi.org/10.2478/pead-2024-0012 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 176 - 190
Submitted on: Dec 26, 2023
|
Accepted on: Jan 26, 2024
|
Published on: Mar 5, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Robert Surus, Mateusz Tejer, Tomasz Tarczewski, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.