Have a personal or library account? Click to login
VSC-Based DSTATCOM for PQ Improvement: A Deep-Learning Approach Cover

VSC-Based DSTATCOM for PQ Improvement: A Deep-Learning Approach

Open Access
|Aug 2022

References

  1. Arya, S. R. and Singh, B. (2013). Performance of DSTATCOM using leaky LMS control algorithm. IEEE Journal of Emerging and Selected Topics in Power Electronics,1(2), pp. 104–113.10.1109/JESTPE.2013.2266372
  2. Arya, S. R., Niwas, R., Bhalla, K. K., Singh, B., Chandra, A. and Al-Haddad, K. (2015). Power quality improvement in isolated distributed power generating system using DSTATCOM. IEEE Transactions on Industry Applications, 51(6), pp. 4766–4774.10.1109/TIA.2015.2451093
  3. Badoni, M., Singh, A. and Singh, B. (2016). Adaptive neurofuzzy inference system least-mean-square-based control algorithm for DSTATCOM. IEEE Transactions on Industrial Informatics,12(2), 483–492.10.1109/TII.2016.2516823
  4. Bayu, A. (2020). Power quality enhancement using DSTATCOM in industry plants. Power Electronics and Drives,5(1), pp. 157–175. doi:10.2478/pead-2020-0012.
  5. Cai, K., Cao, W., Aarniovuori, L., Pang, H., Lin, Y. and Li, G. (2019). Classification of power quality disturbances using Wigner-Ville distribution and deep convolutional neural networks. IEEE Access, 7, pp. 119099–119109.doi: 10.1109/ACCESS.2019.2937193.
  6. Li, Y., Li, J. and Wang, Y. (2022). Privacy-preserving spatiotemporal scenario generation of renewable energies: A federated deep generative learning approach. IEEE Transactions on Industrial Informatics, 18(4), pp. 2310–2320.10.1109/TII.2021.3098259
  7. Liao, H., Milanović, J. V., Rodrigues, M. and Shenfield, A. (2018). Voltage sag estimation in sparsely monitored power systems based on deep learning and system area mapping. IEEE Transactions on Power Delivery, 33(6), pp. 3162–3172.doi: 10.1109/TPWRD.2018.2865906.
  8. Liu, B., Wei, Q., Zou, C. and Duan, S. (2018). Stability analysis of LCL-type grid-connected inverter under single-loop inverter-side current control with capacitor voltage feedforward. IEEE Transactions Industrial Informatics, 14(2), pp. 691–702.10.1109/TII.2017.2766890
  9. Liu, Y., Zhang, W., Sun, Y., Su, M., Xu, G. and Dan, H. (2022). Review and comparison of control strategies in active power decoupling. IEEE Transactions on Power Electronics,36(12), pp. 14436–14455. doi: 10.1109/TPEL.2021.3087170.
  10. Mangaraj, M. (2021). Operation of Hebbian least mean square controlled distributed static compensator. IET Generation, Transmission & Distribution, 15(3), pp. 1939–1948. doi: 10.1049/gtd2.12146.
  11. Mangaraj, M. and Panda, A. K. (2017). Performance analysis of DSTATCOM employing various control algorithms. IET Generation, Transmission and Distribution,11(10), pp. 2643–2653.10.1049/iet-gtd.2016.1833
  12. Mangaraj, M. and Panda, A. K. (2019). Modelling and simulation of KHLMS algorithm-based DSTATCOM. IET Power Electronics, 12(9), pp. 2304-2311.10.1049/iet-pel.2018.5625
  13. Mangaraj, M., Panda, A. K., Penthia, T. and Dash, A. R. (2020). An adaptive LMBP training based control technique for DSTATCOM. IET Generation, Transmission and Distribution, 14(3), pp. 516-524.10.1049/iet-gtd.2018.6295
  14. Mangaraj, M., Sabat, J., Barisal, A.K., Patra, A.K.and Chahattaray, A.K. (2022). Performance evaluation of BB-QZSI based DSTATCOM under dynamic load condition. Power Electronics and Drives,7(1), pp. 43–55.10.2478/pead-2022-0004
  15. Pan, D., Ruan, X., Wang, X., Yu, H. and Xing, Z. (2017). Analysis and design of current control schemes for LCL-type grid-connected inverter based on a general mathematical model. IEEE Transactions on Power Electronics, 32(6), pp. 4395–4410.10.1109/TPEL.2016.2602219
  16. Panda, A. K. and Mangaraj, M. (2017). DSTATCOM employing hybrid neural network control technique for power quality improvement. IET Power Electronics,10(4), pp. 480–489.10.1049/iet-pel.2016.0556
  17. Papadopoulos, S., Rashed, M., Klumpner, C. and Wheeler, P. (2016). Investigations in the modeling and control of a medium-voltage hybrid inverter system that uses a low-voltage/low-power rated auxiliary current source inverter. Journal of Emerging and Selected Topics in Power Electronics, 4(1), pp. 126–140.10.1109/JESTPE.2015.2488631
  18. Pehlevan, C., Hu, T. and Chklovskii, D. B. (2015). A Hebbian/anti-Hebbian neural network for linear subspace learning: A derivation from multidimensional scaling of streaming data. International Journal of Neural Computation, 27(7), pp. 1461–1495.10.1162/NECO_a_0074525973548
  19. Qasim, M., Kanjiya, P. and Khadkikar, V. (2014). Optimal current harmonic extractor based on unified ADALINEs for shunt active power filters. IEEE Transactions Power Electronics, 29(12), pp. 6383–6393.10.1109/TPEL.2014.2302539
  20. Saribulut, L., Teke, A. and Tümay, M. (2014). Artificial neural network-based discrete-fuzzy logic controlled active power filter. IET Power Electronics, 7(6), pp. 1536–1546.10.1049/iet-pel.2013.0522
  21. Singh, B., Jayaprakash, P., Kothari, D. P., Chandra, A. and Haddad, K. A. (2014). Comprehensive study of DSTATCOM configurations. IEEE Transactions on Industrial Informatics, 10(2), pp. 854–870.10.1109/TII.2014.2308437
  22. Siri, B., Berry, H., Cessac, B., Delord, B. and Quoy, M. (2008). A Mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks. International Journal of Neural Computation, 20(12), pp. 2937–2966.10.1162/neco.2008.05-07-53018624656
  23. Srinivas, M., Hussain, I. and Singh, B. (2016). Combined LMS–LMF-based control algorithm of DSTATCOM for power quality enhancement in distribution system. IEEE Transactions on Industrial Electronics, 63(7), pp. 4160–4168.10.1109/TIE.2016.2532278
  24. Tang, Y., Loh, P. C., Wang, P., Choo, F. H., Gao, F. and Blaabjerg, F. (2012). Generalized design of high performance shunt active power filter with output LCL filter. IEEE Transactions on Industrial Electronics, 59(3), pp. 1443–1452.10.1109/TIE.2011.2167117
  25. Zhang, D., Han, X. and Deng, C. (2018). Review on the research and practice of deep learning and reinforcement learning in smart grids. CSEE Journal of Power Energy Systems, 4(3), pp. 362–370.10.17775/CSEEJPES.2018.00520
  26. Zhang, T. and Mao, S. (2020). Smart power control for quality-driven multi-user video transmissions: A deep reinforcement learning approach. IEEE Access, 8, pp. 611–622.doi: 10.1109/ACCESS.2019.2961914.
DOI: https://doi.org/10.2478/pead-2022-0013 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 174 - 186
Submitted on: Apr 17, 2022
Accepted on: Jun 29, 2022
Published on: Aug 31, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Mrutyunjaya Mangaraj, Jogeswara Sabat, Ajit Kumar Barisal, K. Subba Ramaiah, Gudivada Eswara Rao, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.