Have a personal or library account? Click to login
Three-level Vienna Rectifier with a Brushless and Permanent Magnetless Generator for Wind Energy Conversion Systems Cover

Three-level Vienna Rectifier with a Brushless and Permanent Magnetless Generator for Wind Energy Conversion Systems

Open Access
|Apr 2022

References

  1. Bhattacherjee, H., Mukherjee, D., Vuyyuru, U. and Chakraborty, C. (2021). Brushless Synchronous Generator-Unidirectional Rectifier for Offshore Wind Energy Conversion System. IEEE Transactions on Energy Conversion. Available at: https://ieeexplore.ieee.org/document/9629266
  2. Bhattacherjee, H., Rao, Y. T. and Chakraborty, C. (2020). Brushless and Magnetless Synchronous Generator for Standalone DC Load with Vienna Rectifier. IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, Netherlands, pp. 83–88.10.1109/ISIE45063.2020.9152485
  3. Bose, B. K. (2002). Modern Power Electronics and AC Drives. New Jersey, United States: Prentice Hall PTR.
  4. Chakraborty, C. and Rao, Y. T. (2019). Performance of Brushless Induction Excited Synchronous Generator. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(4), pp. 2571–2582.10.1109/JESTPE.2018.2881068
  5. Flores-Bahamonde, F., Valderrama-Blavi, H., Martínez-Salamero, L., Maixé-Altés, J. and García, G. (2014). Control of a Three-Phase AC/DC VIENNA Converter Based on the Sliding Mode Loss-free Resistor Approach. IET Power Electronics, 7(5), pp. 1073–1082.10.1049/iet-pel.2013.0405
  6. Gajewski, P., and Pieńkowski, K. (2016). The Performance of Direct-Driven Variable Speed Wind Turbine With Pmsg And Converter Systems. Power Electronics and Drives, 1, pp. 79–89.
  7. Gil, M. D. P., Domínguez-García, J. L., Díaz-González, F., Aragüés-Peñalba, M., Gomis-Bellmunt, O. (2015). Feasibility Analysis of Offshore Wind Power Plants With DC Collection Grid. Renewable Energy, 78, pp. 467–477.10.1016/j.renene.2015.01.042
  8. Global Wind Report 2021. (2021). GWEC. Available at: https://gwec.net/global-wind-report-2021/ Accessed: December 2021.
  9. Heier, S. (2014). Grid Integration of Wind Energy: Onshore and Offshore Conversion Systems, 3rd ed. New York: Wiley.10.1002/9781118703274
  10. Iwański, G., and Łuszczyk, T. (2017). Control of Doubly Fed Induction Generator at Grid Voltage Imbalance. Power Electronics and Drives, 2, pp. 31–48.
  11. Kumari, S., Kushwaha, V. and Gupta, T. N. (2018). A Maximum Power Point Tracking for a PMSG Based Variable Speed Wind Energy Conversion System. 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC), Greater Noida, India, 2018, pp. 789–794.10.1109/PEEIC.2018.8665484
  12. Lee, J. and Lee, K. (2015). Open-Switch Fault Tolerance Control for a Three-Level NPC/T-Type Rectifier in Wind Turbine Systems. IEEE Transactions on Industrial Electronics, 62(2), pp. 1012–1021.10.1109/TIE.2014.2347912
  13. Lee, J. and Lee, K. (2017). Predictive Control of Vienna Rectifiers for PMSG Systems. IEEE Transactions on Industrial Electronics, 64(4), pp. 2580–2591.10.1109/TIE.2016.2644599
  14. Liu, Y., Pehrman, D., Lykartsis, O., Tang, J. and Liu, T. (2016). High Frequency Exciter of Electrically Excited Synchronous Motors for Vehicle Applications. 2016 XXII International Conference on Electrical Machines (ICEM), pp. 378–383.10.1109/ICELMACH.2016.7732554
  15. Luqman, M., Yao, G., Zhou, L. and Lamichhane, A. (2019). Analysis of Variable Speed Wind Energy Conversion System with PMSG and Vienna Rectifier. IEEE 14th Conference on Industrial Electronics and Applications (ICIEA), pp. 1296–1301.10.1109/ICIEA.2019.8833819
  16. Maswood, A. I., Al-Ammar, E. and Liu, F. (2011). Average and Hysteresis Current-Controlled Three-Phase Three-Level Unity Power Factor Rectifier Operation and Performance. IET Power Electronics, 4(7), pp. 752–758.10.1049/iet-pel.2010.0189
  17. Minibock, J. and Kolar, J. W. (2005). Novel Concept for Mains Voltage Proportional Input Current Shaping of a VIENNA Rectifier Eliminating Controller Multipliers. In: IEEE Transactions on Industrial Electronics, 52(1), pp. 162–170.10.1109/TIE.2004.841096
  18. Moallem, M., Mirzaeian, B., Mohammed, O. A., and Lucas, C. (2001). Multi-Objective Genetic-Fuzzy Optimal Design of PI Controller in the Indirect Field Oriented Control of an Induction Motor. IEEE Transactions on Magnetics, 37(5), pp. 3608–3612s.10.1109/20.952673
  19. Mukherjee, D. and Kastha, D. (2015). Voltage Sensorless Control of the Three-Level Three-Switch Vienna Rectifier with Programmable Input Power Factor. IET Power Electronics, 8(8), pp. 1349–1357.10.1049/iet-pel.2014.0365
  20. Patin, N., Vido, L., Monmasson, E., Louis, J., Gabsi, M. and Lecrivain, M. (2008). Control of a Hybrid Excitation Synchronous Generator for Aircraft Applications. IEEE Transactions on Industrial Electronics, 55(10), pp. 3772–3783.10.1109/TIE.2008.924030
  21. Pavel, C. C., Lacal-Arántegui, R., Marmier, A., Schüler, D., Tzimas, E., Buchert, M., Jenseit, W. and Blagoeva, D. (2017). Substitution Strategies for Reducing the Use of Rare Earths in Wind Turbines. Resources Policy, 52, pp. 349–357.10.1016/j.resourpol.2017.04.010
  22. Prajapat, G. P., Senroy, N. and Kar, I. N. (2021). Estimation Based Enhanced Maximum Energy Extraction Scheme for DFIG-Wind Turbine Systems. Sustainable Energy, Grids and Networks, 26, p. 100419.10.1016/j.segan.2020.100419
  23. Rahimi, M. (2017). Modeling, Control and Stability Analysis of Grid Connected PMSG Based Wind Turbine Assisted with Diode Rectifier and Boost Converter. International Journal of Electrical Power & Energy Systems, 93, pp. 84–96.10.1016/j.ijepes.2017.05.019
  24. Rajaei, A. H., Mohamadian, M., Dehghan, S. M. and Yazdian, A. (2011). PMSG-based Variable Speed Wind Energy Conversion System Using Vienna Rectifier. European Transactions on Electrical Power, 21, pp. 954–972.10.1002/etep.488
  25. Rao, Y. T., Chakraborty, C. and Sengupta, S. (2021). Performance and Stability of Brushless Induction Excited Synchronous Generator Operating in Self-Excited Mode for Wind Energy Conversion System. IEEE Transactions on Energy Conversion, 36(2), pp. 919–929.10.1109/TEC.2020.3023960
  26. Reddy, D. and Ramasamy, S. (2018). Design of RBFN Controller Based Boost Type Vienna Rectifier for Grid-Tied Wind Energy Conversion System. IEEE Access, 6, pp. 3167–3175.10.1109/ACCESS.2017.2787567
  27. Sabrina, U., Schullerus, G. and Soenmez, E. (2021). Active Damping in Series Connected Power Modules with Continuous Output Voltage. Power Electronics and Drives, 6(41), pp. 314–335.
  28. Shipurkar, U., Strous, T. D., Polinder, H., Ferreira, J. A. and Veltman, A. (2017). Achieving Sensorless Control for the Brushless Doubly Fed Induction Machine. IEEE Transactions on Energy Conversion, 32(4), pp. 1611–1619.10.1109/TEC.2017.2724204
  29. Szulawski, P. and Koczara, W. (2016). Synchrogenverter - Parallel Connection of Synchronous Generator and Power Converter with Energy Storage. Power Electronics and Drives, 1, pp. 69–78.
  30. Xu, J. and Xie, S. (2018). LCL-Resonance Damping Strategies for Grid-Connected Inverters with LCL Filters: A Comprehensive Review. Journal of Modern Power Systems and Clean Energy, 6, pp. 292–305.10.1007/s40565-017-0319-7
  31. Yang, G. and Zhu, Y. (2010). Application of a Matrix Converter for PMSG Wind Turbine Generation System. The 2nd International Symposium on Power Electronics for Distributed Generation Systems, Hefei, China, pp. 185–189.10.1109/PEDG.2010.5545933
  32. Yaramasu, V., Wu, B., Sen, P. C., Kouro, S., and Narimani, M. (2015). High-Power Wind Energy Conversion Systems: State-of-the-Art and Emerging Technologies. Proceedings of the IEEE, 103(5), pp. 740–788.10.1109/JPROC.2014.2378692
DOI: https://doi.org/10.2478/pead-2022-0007 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 84 - 102
Submitted on: Jan 13, 2022
Accepted on: Apr 3, 2022
Published on: Apr 29, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Haimanti Bhattacherjee, Debranjan Mukherjee, Chandan Chakraborty, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.