Have a personal or library account? Click to login
Artificial Neural Network-Based Gain-Scheduled State Feedback Speed Controller for Synchronous Reluctance Motor Cover

Artificial Neural Network-Based Gain-Scheduled State Feedback Speed Controller for Synchronous Reluctance Motor

Open Access
|Dec 2021

References

  1. Awan, H. A., Saarakkala, S. E. and Hinkkanen, M. (2019). Flux-Linkage-Based Current Control of Saturated Synchronous Motors. IEEE Transactions on Industry Applications, 55(5), pp. 4762–4769.10.1109/TIA.2019.2919258
  2. Bianchi, N., Bolognani, S., Carraro, E., Castiello, M. and Fornasiero, E. (2016). Electric Vehicle Traction Based on Synchronous Reluctance Motors. IEEE Transactions on Industry Applications, 52(6), pp. 4762–4769.10.1109/TIA.2016.2599850
  3. Boldea, I. and Tutelea, L. (2018). Reluctance Electric Machines: Design and Control. CRC Press.10.1201/9780429458316
  4. Brasel, M. (2014). A Gain-scheduled Multivariable LQR Controller for Permanent Magnet Synchronous Motor. In: Proceedings of the 19th International Conference on Methods and Models in Automation and Robotics MMAR, Miedzyzdroje, 2 – 5 September 2014.10.1109/MMAR.2014.6957443
  5. Credo, A., Fabri, G., Villani, M., and Popescu, M. (2020). Adopting the Topology Optimization in the Design of High-speed Synchronous Reluctance Motors for Electric Vehicles. IEEE Transactions on Industry Applications, 56(5), pp. 5429–5438.10.1109/TIA.2020.3007366
  6. Cvetkovski, G. V. and Petkovska, L. (2021). Selected Nature Inspired Algorithms in Function of PM Synchronous Motor Cogging Torque Minimization. Power Electronics and Drives, 6(41), pp. 209–222.10.2478/pead-2021-0012
  7. Ewert, P. (2019). Application of Neural Networks and Axial Flux for the Detection of Stator and Rotor Faults of an Induction Motor. Power Electronics and Drives, 4(39), pp. 203–215.10.2478/pead-2019-0001
  8. Grzesiak, L. M. and Tarczewski, T. (2015). State Feedback Control with ANN Based Load Torque Feedforward for PMSM Fed by 3-Level NPC Inverter with Sinusoidal Output Voltage Waveform. In: Ferrier J. L., Gusikhin O., Madani K., Sasiadek J., eds., Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, 325, Springer, Cham, pp. 73–90.10.1007/978-3-319-10891-9_4
  9. Hadla, H. and Cruz, S. (2016). Active Flux Based Finite Control Set Model Predictive Control of Synchronous Reluctance Motor Drives. In: Proceedings of the 18th European Conference on Power Electronics and Applications EPE’16 ECCE Europe, Karlsruhe, 6 – 8 September 2016.
  10. Hannoun, H., Hilairet, M. and Marchand, C. (2011). High Performance Current Control of a Switched Reluctance Machine Based on a Gain-Scheduling PI Controller. Control Engineering Practice, 19(11), pp. 1377–1386.10.1016/j.conengprac.2011.07.011
  11. Farhan, A., Abdelrahem, M., Saleh, A., Shaltout, A. and Kennel, R. (2020). Simplified Sensorless Current Predictive Control of Synchronous Reluctance Motor Using On-line Parameter Estimation. Energies, 13(2), pp. 1–18.10.3390/en13020492
  12. Kaźmierkowski, M. P., Blaabjerg, F. and Krishnan, R. (2001). Control in Power Electronics – Selected Problems. London: Academic Press.
  13. Li, J. C., Xin, M., Fan, Z. N. and Liu, R. (2020). Design and Experimental Evaluation of a 12 kW Large Synchronous Reluctance Motor and Control System for Elevator Traction. IEEE Access, 8, pp. 34256–34264.10.1109/ACCESS.2020.2974414
  14. Lin, F. J., Chen, S. G. and Hsu, C. W. (2018). Intelligent Backstepping Control Using Recurrent Feature Selection Fuzzy Neural Network for Synchronous Reluctance Motor Position Servo Drive System. IEEE Transactions on Fuzzy Systems, 27(3), pp. 413–427.10.1109/TFUZZ.2018.2858749
  15. Lin, F. J., Huang, M. S., Chen, S. G., Hsu, C. W. and Liang, C. H. (2019). Adaptive Backstepping Control for Synchronous Reluctance Motor Based on Intelligent Current Angle Control. IEEE Transactions on Power Electronics, 35(7), pp. 7465–7479.10.1109/TPEL.2019.2954558
  16. Oliveira, F. and Ukil, A. (2019). Comparative Performance Analysis of Induction and Synchronous Reluctance Motors in Chiller Systems for Energy Efficient Buildings. IEEE Transactions on Industrial Informatics, 15(8), pp. 4384–4393.10.1109/TII.2018.2890270
  17. Safonov, M. and Athans, M. (1977). Gain and Phase Margin for Multiloop LQG Regulators. IEEE Transactions on Automatic Control, 22(2), pp. 173–179.10.1109/TAC.1977.1101470
  18. Scalcon, F. P., Osório, C. R., Koch, G. G., Gabbi, T. S., Vieira, R. P., Gründling, H. A., and Montagner, V. F. (2020). Robust Control of Synchronous Reluctance Motors by Means of Linear Matrix Inequalities. IEEE Transactions on Energy Conversion, 36(2), pp. 779–788.10.1109/TEC.2020.3028568
  19. Senjyu, T., Kinjo, K., Urasaki, N. and Uezato, K. (2003). High Efficiency Control of Synchronous Reluctance Motors Using Extended Kalman Filter. IEEE Transactions on Industrial Electronics, 50(4), pp. 726–732.10.1109/TIE.2003.814998
  20. Shyu, K. K., Lai, C. K. and Hung, J. Y. (2001). Totally Invariant State Feedback Controller for Position Control of Synchronous Reluctance Motor. IEEE Transactions on Industrial Electronics, 48(3), pp. 615–624.10.1109/41.925589
  21. Tarczewski, T. and Grzesiak, L. M. (2009). High Precision Permanent Magnet Synchronous Servo-drive with Lqr Position Controller. Przeglad Elektrotechniczny, 85(8), pp. 42–47.
  22. Tarczewski, T., Niewiara, L. J. and Grzesiak, L. M. (2021). Gain-Scheduled State Feedback Speed Control of Synchronous Reluctance Motor. In: Proceedings of the 19th International Power Electronics and Motion Control Conference PEMC, Gliwice, 25–29 April 2021.10.1109/PEMC48073.2021.9432549
  23. Tarczewski, T., Skiwski, M. and Grzesiak, L. M. (2017). Constrained Non-stationary State Feedback Speed Control of PMSM. In: Proceedings of the 19th European Conference on Power Electronics and Applications EPE’17 ECCE Europe, Warsaw, 11–14 September 2017.10.23919/EPE17ECCEEurope.2017.8099054
  24. Truong, P. H., Flieller, D., Nguyen, N. K., Mercklé J. and Sturtzer G. (2016). Torque Ripple Minimization in Non-sinusoidal Synchronous Reluctance Motors Based on Artificial Neural Networks. Electric Power Systems Research, 140, pp. 37–45.10.1016/j.epsr.2016.06.045
  25. Yousefi-Talouki, A., Pescetto, P., Pellegrino, G. and Boldea, I. (2017). Combined Active Flux and High-frequency Injection Methods for Sensorless Direct-flux Vector Control of Synchronous Reluctance Machines. IEEE Transactions on Power Electronics, 33(3), pp. 2447–2457.10.1109/TPEL.2017.2697209
DOI: https://doi.org/10.2478/pead-2021-0017 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 276 - 288
Submitted on: Oct 12, 2021
Accepted on: Nov 10, 2021
Published on: Dec 17, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Tomasz Tarczewski, Łukasz J. Niewiara, Lech M. Grzesiak, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.