Have a personal or library account? Click to login
Selected Nature-Inspired Algorithms in Function of PM Synchronous Motor Cogging Torque Minimisation Cover

Selected Nature-Inspired Algorithms in Function of PM Synchronous Motor Cogging Torque Minimisation

Open Access
|Nov 2021

References

  1. Ackermann, B., Janssen, J. H., Sottek, R. and Van Steen, R. I. (1992). New Technique for Reducing Cogging Torque in a Class of Brushless DC Motors. IEE Proceedings of Electric Power Applications, 139(4), pp. 315–320.10.1049/ip-b.1992.0038
  2. Benlamine, R., Dubas, F., Randi, S. A., Lhotellier, D. and Espanet, C., (2013). Design by Optimization of an Axial-Flux Permanent-Magnet Synchronous Motor Using Genetic Algorithms. 2013 International Conference on Electrical Machines and Systems (ICEMS), 23–26, pp. 13–17.10.1109/ICEMS.2013.6754546
  3. Bianchi, N. and Bolognani, S. (2002). Design Techniques for Reducing the Cogging Torque in Surface-Mounted PM Motors. IEEE Transactions on Industry Applications, 38(5), pp. 1259–1265.10.1109/TIA.2002.802989
  4. Bianchi, N. and Bolognani, S. (2000). Reducing Torque Ripple in PM Synchronous Motors by Pole Shifting. Proceedings of the International Conference on Electrical Machines ICEM, 28–30, pp. 1222–1226.
  5. Chitara, D., Niazi, K. R., Swarnkar, A., and Gupta, N., (2018). Cuckoo Search Optimization Algorithm for Designing of a Multimachine Power System Stabilizer. IEEE Transactions on Industry Applications, 54(4), pp. 3056–3065.10.1109/TIA.2018.2811725
  6. Cvetkovski, G. and Petkovska, L. (2016). Multi-Objective Approach of Design Optimization of Axial Flux Permanent Magnet Motor. International Journal of Applied Electromagnetics and Mechanics, 51(s1), pp. S115–S123.10.3233/JAE-2006
  7. Cvetkovski, G. and Petkovska, L. (2021). Cogging Torque Minimization of PM Synchronous Motor Using Nature Based Algorithms. IEEE International Power Electronics and Motion Control Conference IEEE PEMC2020, 25–29, pp. 419–425.10.1109/PEMC48073.2021.9432507
  8. Deb, K. and Jain, H. (2014). An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Non-dominated Sorting Approach, Part I: Solving Problems With Box Constraints, IEEE Transactions on Evolutionary Computation, 18(4), pp. 577–601.10.1109/TEVC.2013.2281535
  9. Deodhar, R. P. Stanton, D. A. Jahns, T. M. and Miller, T. J. (1996). Prediction of Cogging Torque Using the Flux-MMF Diagram Technique. IEEE Transactions on Industry Application, 32(3), pp. 569–575.10.1109/28.502168
  10. Di Barba, P., Mognaschi, M. E., Rezaei, N., Lowther, D. A. and Rahman, T. (2019). Many-Objective Shape Optimisation of IPM Motors for Electric Vehicle Traction. International Journal of Applied Electromagnetics and Mechanics, 60(S1), pp. S149–S162.10.3233/JAE-191113
  11. Eom, J. B., Hwang, S. M., Kim, T. J., Jeong, W. B. and Kang, B. S. (2001). Minimization of Cogging Torque in Permanent Magnet Motors by Teeth Pairing and Magnet Arc Design Using Genetic Algorithm. Journal of Magnetism and Magnetic Materials, 226–230(2), pp. 1229–1231.10.1016/S0304-8853(01)00053-1
  12. Fei, W. and Luk, P. C. (2010). A New Technique of Cogging Torque Suppression in Direct-Drive Permanent-Magnet Brushless Machines. IEEE Transactions on Industry Applications, 46(4), pp. 1332–1340.10.1109/TIA.2010.2049551
  13. Gieras, J. F. (2004). Analytical Approach to Cogging Torque Calculation of PM Brushless Motors. IEEE Transactions on Industry Applications, 40(5), pp. 1310–1316.10.1109/TIA.2004.834108
  14. Goto, M. and Kobayashi, K. (1983). An Analysis of the Cogging Torque of a DC Motor and a New Technique of Reducing the Cogging Torque. Electrical Engineering Japan, 103(5), pp. 113–120.10.1002/eej.4391030515
  15. Ho, S. L., Chen, N. and Fu, W. N. (2010). An Optimal Design Method for the Minimization of Cogging Torques of a Permanent Magnet Motor Using FEM and Genetic Algorithm. IEEE Transactions on Applied Superconductivity, 20(3), pp. 861–864.10.1109/TASC.2009.2038717
  16. Holland, J. H. (1995). Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press.
  17. Infolytica, User’s manual, Infolytica Corporation,Wappenham, 2016.
  18. Ishikawa, T. and Slemon, G. R. (1993). A Method of Reducing Ripple Torque in Permanent Magnet Motors Without Skewing. IEEE Transactions on Magnetics, 29(2), pp. 2028–2031.10.1109/20.250808
  19. Islam, M. S., Mir, S. and Sebastian, T. (2004). Issues in Reducing the Cogging Torque of Mass-Produced Permanent-Magnet Brushless DC Motor. IEEE Transactions on Industry Applications, 40(3), pp. 813–820.10.1109/TIA.2004.827469
  20. Jensen, W. R., Pham, T. Q. and Foster, S. N. (2019). Comparison of multi-objective optimization methods applied to electrical machine design. In: K. Deb, eds., Evolutionary Multi-Criterion Optimization. Cham: Springer, pp. 719–730.10.1007/978-3-030-12598-1_57
  21. Kamal, C., Thyagarajan, T., Selvakumari, M. and Kalpana, D., (2017). Cogging Torque Minimization in Brushless DC Motor Using PSO and GA Based Optimization. 2017 Trends in Industrial Measurement and Automation (TIMA), pp. 1–5.10.1109/TIMA.2017.8064815
  22. Kang, G. H. and Hur, J. (2005). Analytical Prediction and Reduction of the Cogging Torque in Interior Permanent Magnet Motor. IEEE International Conference on Electric Machines and Drives, pp. 1620–1624.10.1109/IEMDC.2005.195936
  23. Kumar, A. and Chakarverty, S. (2011). Design Optimization for Reliable Embedded System Using Cuckoo Search. 2011 3rd International Conference on Electronics Computer Technology, 1, pp. 264–268.10.1109/ICECTECH.2011.5941602
  24. Lei, G., Bramerdorfer, G., Ma, B., Guo, Y. and Zhu, J. (2021). Robust Design Optimization of Electrical Machines: Multi-Objective Approach. IEEE Transactions on Energy Conversion, 36(1), pp. 390–401.10.1109/TEC.2020.3003050
  25. Li, T. and Slemon, G. (1988). Reduction of Cogging Torque in Permanent Magnet Motors. IEEE Transactions on Magnetics, 24(6), pp. 2901–2903.10.1109/20.92282
  26. Lukaniszyn, M., Jagiela, M. and Wrobel, R. (2004). Optimization of Permanent Magnet Shape for Minimum Cogging Torque Using a Genetic Algorithm. IEEE Transactions on Magnetics, 40(2), pp. 1228–1231.10.1109/TMAG.2004.825185
  27. Ma, G., Qiu, X., Yang, J., Bu, F., Dou, Y. and Cao, W. (2018). Structural Parameter Optimization to Reduce Cogging Torque of the Consequent Pole In-Wheel Motor. 2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC), pp. 170–175.10.1109/EPEPEMC.2018.8521869
  28. Mirahki, H., Moallem, M. and Rahimi, S. A. (2014). Design Optimization of IPMSM for 42 V Integrated Starter Alternator Using Lumped Parameter Model and Genetic Algorithms. IEEE Transactions on Magnetics, 50(3), pp. 114–119.10.1109/TMAG.2013.2285358
  29. Mirjalili, S., Dong, J. S. and Lewis, A. (2020). Nature-Inspired Optimizers–Theories, Literature Reviews and Applications. Springer, Cham, Switzerland.10.1007/978-3-030-12127-3
  30. Motor Solve, User’s manual, Infolytica Corporation,Wappenham 2016.
  31. Quintal-Palomo, R., Dybkowski, M. and Qwoździewicz, M. A. (2016). Parametric Analysis for the Design of a 4 Pole Radial Permanent Magnet Generator for Small Wind Turbines. Power Electronics and Drives, 36(2), pp. 175–186.
  32. Siregar, M., Mohamed, T. Z., Wohon, D. R. and Nur, T. (2019). Optimizing the Cogging Torque Reduction of Integral Slot Number in Permanent Magnet Machine. 2019 International Conference on Technologies and Policies in Electric Power & Energy, pp. 1–5.10.1109/IEEECONF48524.2019.9102530
  33. Sun, S., Jiang, F., Li, T. and Yang, K. (2019). Optimization of Cogging Torque in a Hybrid Axial and Radial Flux Permanent Magnet Machine. 22nd International Conference on Electrical Machines and Systems (ICEMS), pp. 1–5.10.1109/ICEMS.2019.8921947
  34. Uler, G. F., Mohammed, O. A. and Koh, C. S. (1995). Design Optimization of Electrical Machines Using Genetic Algorithms. IEEE Transactions on Magnetics, 31(3), pp. 2008–2011.10.1109/20.376437
  35. Wu, L. J., Zhu, Z. Q., Staton, D. A., Popescu, M. and Hawkins, D. (2012). Comparison of Analytical Models of Cogging Torque in Surface-Mounted PM Machines. IEEE Transactions on Industrial Electronics, 59(6), pp. 2414–2425.10.1109/TIE.2011.2143379
  36. Yang, X. S. (2014). Nature-Inspired Optimization Algorithms. Elsevier, London.10.1016/B978-0-12-416743-8.00010-5
  37. Yang, X. S. and Deb, S. (2010). Engineering optimization by Cuckoo Search. International Journal of Mathematical Modelling and Numerical Optimization, 1(4), pp. 330–343.10.1504/IJMMNO.2010.035430
  38. Zarko, D., Ban, D., and Lipo, T. A. (2008). Analytical Solution for Cogging Torque in Surface Permanent-Magnet Motors Using Conformal Mapping. IEEE Transactions on Magnetics, 44(1), pp. 52–65.10.1109/TMAG.2007.908652
  39. Zhu, Z. Q. and Howe, D. (2000). Influence of Design Parameters on Cogging Torque in Permanent Magnet Machines. IEEE Transactions on Energy Conversion, 15(4), pp. 407–412.10.1109/60.900501
DOI: https://doi.org/10.2478/pead-2021-0012 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 204 - 217
Submitted on: Aug 1, 2021
Accepted on: Sep 21, 2021
Published on: Nov 15, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Goga Vladimir Cvetkovski, Lidija Petkovska, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.