Have a personal or library account? Click to login
Laser Power Transmission and Its Application in Laser-Powered Electrical Motor Drive: A Review Cover

Laser Power Transmission and Its Application in Laser-Powered Electrical Motor Drive: A Review

Open Access
|Nov 2021

References

  1. Alejnikov, V. S., Artjushenko, V. G., Belyaev, V. P., Vojtsekhovsky, V. V., Dianov, E. M., Lisitsky, I. S., Butvina, L. N., Masychev, V. I., Savenkova, T. N. and Sysoev, V. K. (1985). Fibre-Optic Cable for CO and CO2 Laser Power Transmission. Optics and Laser Technology, 17(4), pp. 213–214.10.1016/0030-3992(85)90091-X
  2. Anon. (2011). Rapid Development of Photovoltaic Technology. Dual-use Technology and Products, 11(3). Available at: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=HTJM201103007&uniplatform=NZKPT&v=%25mmd2Fd92uus1kgPPnbLzbkNe3pQJBESOmY03XWhvUv88I8cvpiRf5bp1BO%25mmd2BJYNQLR%25mmd2BUa
  3. AUVSI. (2012). Laser Motive, Lockheed Demonstrate Real-World Laser Power. [Online]. Available at: https://www.flightglobal.com/news/articles/auvsilasermotive-lockheed-demonstrate-real-world-laser-375166/
  4. Balaguer, C. and Abderrahim, M. ed. (2008). Robotics and Automation in Construction. BoD–Books on Demand, pp. 373–380.10.5772/86
  5. Becker, D. E., Chiang, R. and Keys, C. C. (2013). Photovoltaic Concentrator Based Power Beaming for Space Elevator Application. AIP Conference Proceedings. American Institute of Physics, 1230(1), pp. 271–281.
  6. Becker, D. E., Chiang, R., Keys, C. C., Lyjak, A. W., Nees, J. A. and Starch, M. D. (2010). Photovoltaic Concentrator-Based Power Beaming for Space Elevator Application. AIP Conference Proceedings, 1230(1), pp. 271–281.10.1063/1.3435443
  7. Billat, A., Blanc, J., Kuhnhenn, J. and Ricci, D. (2017). Photobleaching Effects in Multi-Mode Radiation Resistant Optical Fibers. 2017 17th European Conference on Radiation and Its Effects on Components and Systems (RADECS), pp. 1–3.10.1109/RADECS.2017.8696251
  8. Bogachev, A. V., Garanin, S. G., Dudov, A. M., Eroshenko, V. A., Kulikov, S. M., Mikaelian, G. T., Panarin, V. A., Pautov, V. O., Rus, A. V. and Sukharev, S. A. (2012). Diode Pumped Caesium Vapor Laser with Closed Cycle Laser Active Medium Circulation. Quantum Electronics, 42(2), pp. 95–98.10.1070/QE2012v042n02ABEH014734
  9. Brand, T., Unger, A., Koehler, B., Wolf, P., Beczkowiak, A. and Biesenbach, J. (2013). Diode Laser Platform for Multi-kW Applications. 2013 High Power Diode Lasers and Systems Conference (HPD), pp. 32–33.10.1109/HPD.2013.6706604
  10. Bull, S., Kaunga-Nyirenda, S. N. and Larkins, E. C. (2013). Design Considerations for High-Power External Cavity Laser Diodes. 2013 High Power Diode Lasers and Systems Conference (HPD), pp. 6–7.10.1109/HPD.2013.6706591
  11. Cotal, H. L., Lillington, D. R., Ermer, J. H., King, R. R., Karam, N. H., Kurtz, S. R., Friedman, D. J., Olson, J. M., Ward, S., Duda, A. and Emery, K. A. (2000). Highly Efficient 32.3% Monolithic GaInP/GaAs/Ge Triple Junction Concentrator Solar Cells. National Renewable Energy Lab.
  12. Guo, A. and Sun, Q. (2007). Progress of Semiconductor Solar Cell Technology Based on GaAs. Chinese Journal of Power Sources, 31(9), pp. 757–758.
  13. Han, M. (2018). Study on Photoelectric Conversion Efficiency of GaAs Concentrator Cells Under Laser Irradiation. Nanjing University of Aeronautics and Astronautics. Available at: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201901&filename=1019800556.nh&uniplatform=NZKPT&v=s%25mmd2FiHMT7eJYbThD4OCb%25mmd2BMLlncq0HXdeU9F7R2QzvnVxHVzxWYMSpjhbuYNccxBuo3
  14. Helal, M. A., Bull, S., Kaunga-Nyirenda, S. N., Lim, J. J. and Larkins, E. C. (2013). Simulation of High-Brightness Diode Lasers with Optical Feedback from Modules and Systems. 2013 High Power Diode Lasers and Systems Conference (HPD), pp. 14–15.10.1109/HPD.2013.6706595
  15. Helmers, H., Armbruster, C., von Ravenstein, M., Derix, D. and Schoner, C. (2020). 6-W Optical Power Link With Integrated Optical Data Transmission. IEEE Transactions on Power Electronics, 35(8), pp. 7904–7909.10.1109/TPEL.2020.2967475
  16. Hengesbach, S., Witte, U., Traub, M. and Hoffmann, D. (2013). Design of a DFB/DBR Diode Laser Module Including Spectral Multiplexing Based on VBGs. 2013 High Power Diode Lasers and Systems Conference (HPD), pp. 16–17.10.1109/HPD.2013.6706596
  17. Huang, H. (2013). Theoretical and Experimental Study on Feedback Resonant Laser Energy Transmission. Doctor’s Thesis. Tsinghua University.
  18. Huang, R. K., Samson, B., Chann, B., Lochman, B. and Tayebati, P. (2015). Recent Progress on High-Brightness kW-Class Direct Diode Lasers. 2015 IEEE High Power Diode Lasers and Systems Conference (HPD), pp. 29–30.10.1109/HPD.2015.7439679
  19. Jin, K. and Zhou, W. (2019). Wireless Laser Power Transmission: A Review of Recent Progress. IEEE Transactions on Power Electronics, 34(4), pp. 3842–3859.10.1109/TPEL.2018.2853156
  20. Kalyuzhnyy, N. A., Emelyanov, V. M., Evstropov, V. V., Mintairov, S. A., Mintairov, M. A., Nahimovich, M. V., Salii, R. A. and Shvarts, M. Z. (2020). Optimization of Photoelectric Parameters of InGaAs Metamorphic Laser (λ = 1064 nm) Power Converters with Over 50% Efficiency. Solar Energy Materials and Solar Cells, 217, pp. 110710.10.1016/j.solmat.2020.110710
  21. Kawashima, N. and Takeda, K. (2005). Laser Energy Transmission for a Wireless Energy Supply to Robots. Robotics and Automation in Construction, 10, pp. 373–380.10.22260/ISARC2005/0068
  22. Kawashima, N., Takeda, K. and Yabe, K. (2007). Application of the Laser Energy Transmission Technology to Drive a Small Airplane. Chinese Optics Letters, 5(101), pp. S109–S110.
  23. Kinsey, G. S., Hebert, P., Barbour, K. E., Krut, D. D., Cotal, H. L., Sherif, R. A. (2009). Concentrator Multijunction Solar Cell Characteristics Under Variable Intensity and Temperature. Progress in Photovoltaics: Research and Applications, 16(6), pp. 503–508.10.1002/pip.834
  24. Kleine, K. and Balu, P. (2017). High-Power Diode Laser Sources for Materials Processing. 2017 IEEE High Power Diode Lasers and Systems Conference (HPD), pp. 3–4.10.1109/HPD.2017.8261076
  25. Krasnoshchoka, A., Xu, J., Thorseth, A., Dam-Hansen, C., Jensen, O. B. (2019). High Luminous Flux Laser Lighting Using Single-Crystal Ce:YAG Phosphor. 2019 IEEE High Power Diode Lasers and Systems Conference (HPD), pp. 31–32.10.1109/HPD48113.2019.8938604
  26. Liu, F. (2016). Xie Honggang. Effect of γ-radiation on optical fiber dispersion. Infrared and Laser Engineering, 45(1), pp. 116–121.10.3788/irla201645.0118001
  27. Lucas-Leclin, G., Schimmel, G., Albrodt, P., Hanna, M. and Georges, P. (2017). Coherent Combining Architectures for High-Brightness Laser Diodes. 2017 IEEE High Power Diode Lasers and Systems Conference (HPD), pp. 49–50.10.1109/HPD.2017.8261095
  28. McComb, T. S., Sims, R. A., Willis, C. C., Kadwani, P., Shah, L. and Richardson, M. (2010). Atmospheric Transmission Testing Using a Portable, Tunable, High Power Thulium Fiber Laser System. CLEO/QELS: 2010 Laser Science to Photonic Applications, pp. 1–2.10.1364/CLEO.2010.JThJ5
  29. McCormick, D., Irwin, D., Stapleton, D., Braker, J., Koenning, T. and Patterson, S. (2015). Ultra-Narrow Spectral Linewidth Diode Lasers for the Pumping of Alkalis. 2015 IEEE High Power Diode Lasers and Systems Conference (HPD), pp. 25–26.10.1109/HPD.2015.7439677
  30. Mohammadnia, A., Ziapour, B. M., Ghaebi, H. and Khooban, M.H. (2021). Feasibility Assessment of Next-Generation Drones Powering by Laser-Based Wireless Power Transfer. Optics and Laser Technology, 143, pp. 107283.10.1016/j.optlastec.2021.107283
  31. Nishioka, K., Sueto, T., Uchina, M. and Ota, Y. (2010). Detailed Analysis of Temperature Characteristics of an InGaP/InGaAs/Ge Triple-Junction Solar Cell. Journal of Electronic Materials, 39(6), pp. 704–708.10.1007/s11664-010-1171-y
  32. Nishioka, K., Takamoto, T., Agui, T., Kaneiwa, M., Uraoka, Y. and Fuyuki, T. (2006). Annual Output Estimation of Concentrator Photovoltaic Systems Using High-Efficiency InGaP/InGaAs/Ge Triple-Junction Solar Cells Based on Experimental Solar Cell’s Characteristics and Field-Test Meteorological Data. Solar Energy Materials and Solar Cells, 90(1), pp. 57–67.10.1016/j.solmat.2005.01.011
  33. Raible, D. E. (2008). High Intensity Laser Power Beaming for Wireless Power Transmission. Master’s Thesis, Department of Electrical and Computer Engineering, Cleveland State University, Cleveland, OH, 5.
  34. Raible, D. E. (2011). Free Space Optical Communications with High Intensity Laser Power Beaming. Doctor’s Thesis, Department of Electrical and Computer Engineering, Cleveland state University, Cleveland, OH, 6.
  35. Reng, N. and Beck, T. (1993). Transmission Properties of All-Silica Fibres for High-Power Nd: YAG Lasers. Optics and Laser Technology, 25(2), pp. 117–124.10.1016/0030-3992(93)90106-P
  36. Röhner, M., Wagner, L., Pietrzak, A. and Hülsewede, R. (2013). Fiber-Coupled High-Power Diode-Lasers with Highest Radiance. 2013 High Power Diode Lasers and Systems Conference (HPD), pp. 36–37.10.1109/HPD.2013.6706606
  37. Rossin, V., Peters, M., Demir, A., Morehead, J. J., Guo, J., Xiao, Y., Cheng, J., Hsieh, A., Duesterberg, R. and Skidmore, J. (2015). High Power, High Brightness Diode Lasers for kW Lasers Systems. 2015 IEEE High Power Diode Lasers and Systems Conference (HPD), pp. 35–36.10.1109/HPD.2015.7439682
  38. Rubenchik, A. M., Fedoruk, M. P. and Turitsyn, S. K. (2009). Laser Beam Self-Focusing in the Atmosphere. Physical Review Letters, 102(23), pp. 233902.10.1103/PhysRevLett.102.23390219658935
  39. Sahai, A. and Graham, D. (2011). Optical Wireless Power Transmission at Long Wavelengths. 2011 International Conference on Space Optical Systems and Applications, pp. 164–170.10.1109/ICSOS.2011.5783662
  40. Shi, D., Zhang, L., Ma, H., Wang, Z., Wang, Y. and Cui, Z. (2016). Research on Wireless Power Transmission System Between Satellites. 2016 IEEE Wireless Power Transfer Conference (WPTC), pp. 1–4.
  41. Song, Z. (2018). Energy Transfer Technology of 975 nm Fiber Coupled Semiconductor Laser. Space Electronic Technology, 15(2), pp. 101–105.
  42. Steinsiek, F., Foth, W. P. and Weber, K. H. (2003). Wireless Power Transmission Experiment as an Early Contribution to Planetary Exploration Mission. Bremen: the 54th International Astronautical Congress, 3, pp. 169–176.10.2514/6.IAC-03-R.3.06
  43. Summerer, L. and Purcell, O. (2009). Concepts for Wireless Energy Transmission via Laser. Europeans Space Agency (ESA)-Advanced Concepts Team.
  44. Sumpf, B. (2016). Wavelength Stabilized High-Power Diode Lasers — Devices and Applications. 2016 International Conference Laser Optics (LO), pp. R3–3.10.1109/LO.2016.7549713
  45. Wang, H. and Jiang, D. (2017). Design of High Temperature Gate Driver for SiC MOSFET for EV Motor Drives. 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific, pp. 1–6.10.1109/ITEC-AP.2017.8080762
  46. Wang, N. (2011). Research on the Key Technology of Laser Active Power Supply in Wireless Sensor Networks. Chongqing University. Available at: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFD1214&filename=1012008792.nh&uniplatform=NZKPT&v=upBXyQhlId8gcVYbV32d%25mmd2BP%25mmd2F3KIMCwre%25mmd2Bp5GNwtWS3MTW7ZEQ4gBCA4ZeOL723TBE
  47. Wang, W., Li, M. and Ji, X. (2012). A Novel Fresnel Concentrator for GaAs Cells. Acta Optica Sinica, 7, pp. 198–204.
  48. Wang, X. and Zhang, Y. (2012). Research Status and Development Trends of GaAs Trijunction Solar Cells. National MOCVD Academic Conference.
  49. Wang, Z., Zhang, H. and Liu, Y. (2013). Theoretical and Experimental Analysis of Electrical Characteristics of InGaP/GaAs/Ge Three-junction GaAs Photovoltaic Cells. Proceedings of the CSEE, 33(27), pp. 168–174.
  50. Wen, J. (2020). Fabrication and Properties of Radiation Resistant Polarization Keeping Fiber. Flight Control and Detection. 3(02), pp. 81–85.
  51. Witte, U., Hamann, M., Di Meo, A., Rubel, D., Traub, M. and Hoffmann, D. (2015). High Power Diode Laser with 23W ex 35 μm Fibre. 2015 IEEE High Power Diode Lasers and Systems Conference (HPD), pp. 17–18.10.1109/HPD.2015.7439673
  52. Witte, U., Hengesbach, S., Traub, M., Strotkamp, M., Jungbluth, B. and Hoffmann, D. (2013). High Brightness Diode Laser Module in the Red Spectral Range for Pumping Applications. 2013 High Power Diode Lasers and Systems Conference (HPD), pp. 30–31.10.1109/HPD.2013.6706603
  53. Xiao, B. (2017). Design and Implementation of Low Power Intelligent Fiber Energy Transmission System. Nanjing University of Posts and Telecommunications. Available at: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201801&filename=1017859792.nh&uniplatform=NZKPT&v=K4QceUFOQkJyequ4S32EhIA9Iy5qfHzrBmMM1Y2j6Y7FUiWnMWTto%25mmd2F365%25mmd2Fa9KXdS
  54. Yang, Y., Chen, G. and Guo, L. (2010). Study on I-V Characteristics of Three-junction GaAs Solar Cells. Semiconductor Technology, 35(5), pp. 423–426.
  55. Yao, Y. (2009). Study on Thermal Halo Effect of High Power Laser Propagation in Atmosphere. Xidian University.
  56. Yugami, H., Kanamor, Y., Arashi, H., Niino, M., Moro, A., Eguchi, K., Okada, Y. and Endo, A. (1997). Field Experiment of Laser Energy Transimission and Laser to Electric Conversion. Honolulu: Proceedings of the Intersociety Energy Conversion Engineering Conference, 1, pp. 625–630.
  57. Zhang, G. X., Chen, S., Xu, S. G., Luo, B. and Zhao, Y. M. (2010). Application and Research of Laser De-icing in Power System. 2010 IEEE International Power Modulator and High Voltage Conference, pp. 470–473.10.1109/IPMHVC.2010.5958396
  58. Zhang, M. (2017). Experimental Study on Gamma Irradiation Effect of Double Cladding Ultraviolet Fiber. Atomic Energy Science and Technology, 51(3), pp. 536–542.
  59. Zhang, Q., Yun, F. and He, Q. (2020). Research on Space Radiation Damage Mechanism and Performance Improvement of Quartz Fiber. Fiber and Cable and Its Application Technology, 6, pp. 7–9.
  60. Zhang, Z., Lu, J. and Chi, W. (2003). Progress and Prospect of GaAs Solar Cell Technology. Shanghai Aerospace, 20(3), pp. 33–38.
  61. Zhao, X. (2007). Study on the Energy Transmission Characteristics of Fiber Laser with Peak Power. China Academy of Engineering Physics.
  62. Zhou, W. (2018). Research on Key Technology of Laser Radio Energy Transmission System. Nanjing University of Aeronautics and Astronautics.
  63. Zhou, W. and Jin, K. (2015a). Efficiency Evaluation of Laser Diode in Different Driving Modes for Wireless Power Transmission. IEEE Transactions on Power Electronics, 30(11), pp. 6237–6244.10.1109/TPEL.2015.2411279
  64. Zhou, W. and Jin, K. (2015b). Efficiency Optimization Inject Current Characteristic of Laser Diode for Wireless Power Transmission. 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3082–3086.10.1109/ECCE.2015.7310091
  65. Zhuang, Y., Hua, L. and Guo, B. (2014). Research and Design of Laser Energy Converter for Laser Energy Transmission System. Infrared, 35(12), pp. 35–40.
  66. Zimer, H., Haas, M., Nagel, S., Ginter, M., Ried, S., Rauch, S., Killi, A. and Heinemann, S. (2015). Spectrally Stabilized and Combined Diode Lasers. 2015 IEEE High Power Diode Lasers and Systems Conference (HPD), pp. 31–32.10.1109/HPD.2015.7439680
  67. Zimer, H., Ried, S., Tillkorn, C., Killi, A., Barnowski, T., An, H. and Schmidt, B. (2013). Beam Combining Technologies for Direct Diode Laser Systems at the kW Power Level. 2013 High Power Diode Lasers and Systems Conference (HPD), pp. 38–39.10.1109/HPD.2013.6706607
  68. Zimmermann, S., Helmers, H., Tiwari, M. K., Paredes, S., Michel, B., Wiesenfarth, M., Bett, A. W. and Poulikakos, D. (2015). A High-Efficiency Hybrid High-Concentration Photovoltaic System. International Journal of Heat and Mass Transfer, 89, pp. 514–521.10.1016/j.ijheatmasstransfer.2015.04.068
  69. Zotov, K. (2008a). Radiation-Resistant Erbium-Doped Fiber for Spacecraft Applications. IEEE Transactions on Nuclear Science, 55(4), pp. 2213–2215.10.1109/TNS.2008.2001834
  70. Zotov, K. V., Likhachev, M. E., Tomashuk, A. L., Kosolapov, A. F., Bubnov, M. M., Yashkov, M. V., Guryanov, A. N. and Dianov, E. M. (2008b). Radiation Resistant Er-Doped Fibers: Optimization of Pump Wavelength. IEEE Photonics Technology Letters, 20(17), pp. 1476–1478.10.1109/LPT.2008.927909
DOI: https://doi.org/10.2478/pead-2021-0010 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 167 - 184
Submitted on: Jul 5, 2021
Accepted on: Sep 13, 2021
Published on: Nov 28, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Hongzuo Liu, Yixuan Zhang, Yihua Hu, Zion Tse, Jing wu, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.