Have a personal or library account? Click to login
Effectiveness Analysis of Rolling Bearing Fault Detectors Based On Self-Organising Kohonen Neural Network – A Case Study of PMSM Drive Cover

Effectiveness Analysis of Rolling Bearing Fault Detectors Based On Self-Organising Kohonen Neural Network – A Case Study of PMSM Drive

By: Kamila Jankowska and  Pawel Ewert  
Open Access
|Jul 2021

References

  1. Akar, M., Hekim, M. and Orhan, U. (2015). Mechanical Fault Detection in Permanent Magnet Synchronous Motors Using Equal Width Discretization-Based Probability Distribution and a Neural Network Model. Turkish Journal of Electrical Engineering and Computer Sciences, 23(3), pp. 813–823.10.3906/elk-1210-58
  2. Breard, G. T. (2017). Evaluating Self-Organizing Map Quality Measures as Convergence Criteria. University of Rhode Island: Open Access Master’s Theses, Paper 1033.
  3. Ewert, P., Kowalski, C. T. and Orlowska-Kowalska, T. (2020). Low-Cost Monitoring and Diagnosis System for Rolling Bearing Faults of the Induction Motor Based on Neural Network Approach. Electronics, 9(9), pp. 1334.10.3390/electronics9091334
  4. Ewert, P., Orlowska-Kowalska, T. and Jankowska, K. (2021). Effectiveness Analysis of PMSM Motor Rolling Bearing Fault Detectors Based on Vibration Analysis and Shallow Neural Networks. Energies, 14(3), pp. 712.10.3390/en14030712
  5. Faiz, J., Takbash, A. M. and Mazaheri-Tehrani, E. (2017). A Review of Application of Signal Processing Techniques for Fault Diagnosis of Induction Motors—Part I. AUT Journal of Electrical Engineering, 49(2), pp. 109–122.
  6. Frosini, L., Harlişca, C. and Szabó, L. (2015). Induction Machine Bearing Fault Detection by Means of Statistical Processing of the Stray Flux Measurement. IEEE Transactions on Industrial Electronics, 62(3), pp. 1846–1854.10.1109/TIE.2014.2361115
  7. Germen E., Başaran M. and Fidan M. (2014). Sound Based Induction Motor Fault Diagnosis Using Kohonen Self-Organizing Map. Mechanical Systems and Signal Processing, 46(1), pp. 45–58.10.1016/j.ymssp.2013.12.002
  8. He, J., Somogyi, C., Strandt, A. and Demerdash, N. A. (2014). Diagnosis of Stator Winding Short-Circuit Faults in an Interior Permanent Magnet Synchronous Machine. In: Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), USA: Pittsburgh, PA.10.1109/ECCE.2014.6953825
  9. Henao, H., Capolino, G. A., Fernandez-Cabanas, M., Filippetti, F., Bruzzese, C., Strangas, E., Pusca, R., Estima, J., Riera-Guasp, M. and Hedayati-Kia, S. (2014). Trends in Fault Diagnosis for Electrical Machines: A Review of Diagnostic Techniques. IEEE Industrial Electronics Magazine, 8(2), pp. 31–42.10.1109/MIE.2013.2287651
  10. Immovilli, F., Bellini, A., Rubini, R. and Tassoni, C. (2010). Diagnosis of Bearing Faults in Induction Machines by Vibration or Current Signals: A Critical Comparison. IEEE Transactions on Industry Applications. 46(4), pp. 1350–1359.10.1109/TIA.2010.2049623
  11. Jaganathan, B., Venkatesh, S., Bhardwaj, Y. and Prakash, C. A. (2011). Kohonen’s Self Organizing Map Method of Estimation of Optimal Parameters of a Permanent Magnet Synchronous Motor drive. In: Proceedings of the India International Conference on Power Electronics 2010 (IICPE2010), New Delhi, India.10.1109/IICPE.2011.5728132
  12. Kohonen, T. (2001). Self-Organizing Maps. Berlin, Germany: Springer.10.1007/978-3-642-56927-2
  13. Liu, H., Li, D., Yuan, Y., Zhang, S., Zhao, H. and Deng, W. (2019). Fault Diagnosis for a Bearing Rolling Element Using Improved VMD and HT. Applied Sciences, 9(7), pp. 1439.10.3390/app9071439
  14. Lu, S., He, Q. and Zhao, J. (2018). Bearing Fault Diagnosis of a Permanent Magnet Synchronous Motor via a Fast and Online Order Analysis Method in an Embedded System. Mechanical Systems and Signal Processing, 113, pp. 36–49.10.1016/j.ymssp.2017.02.046
  15. Nkuna, J. S. R. (2006). Vibration Condition Monitoring and Fault Classification of Rolling Element Bearings Utilising Kohonen’s Self-organising Maps. Theses and Dissertations (Mechanical Engineering). Ph.D. Thesis, Vaal University of Technology: Vanderbijlpark, South Africa.
  16. Picot, A., Obeid, Z., Régnier, J., Poignant, S., Darnis, O. and Maussion, P. (2014). Statistic-Based Spectral Indicator for Bearing Fault Detection in Permanent-Magnet Synchronous Machines Using the Stator Current. Mechanical Systems and Signal Processing, 46(2), pp. 424–441.10.1016/j.ymssp.2014.01.006
  17. Rosero, J., Romeral, L., Rosero, E. and Urresty, J. (2009). Fault Detection in Dynamic Conditions by means of Discrete Wavelet Decomposition for PMSM Running Under Bearing Damage. In: Proceedings of the 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA.10.1109/APEC.2009.4802777
  18. Skora, M., Ewert, P. and Kowalski, C. T. (2019). Selected Rolling Bearing Fault Diagnostic Methods in Wheel Embedded Permanent Magnet Brushless Direct Current Motors. Energies, 12(21), pp. 4212.10.3390/en12214212
  19. Skowron, M., Wolkiewicz, M., Orlowska-Kowalska, T. and Kowalski, C. T. (2019). Effectiveness of Selected Neural Network Structures Based on Axial Flux Analysis in Stator and Rotor Winding Incipient Fault Detection of Inverter-fed Induction Motors. Energies, 12(12), pp. 2392.10.3390/en12122392
  20. Ullah, Z., Lodhi, B. A. and Hur, J. (2020). Detection and Identification of Demagnetization and Bearing Faults in PMSM Using Transfer Learning-Based VGG. Energies, 13(15), pp. 3834.10.3390/en13153834
  21. Zhang, J., Wu, J., Hu, B. and Tang, J. (2020). Intelligent Fault Diagnosis of Rolling Bearings Using Variational Mode Decomposition and Self-Organizing Feature Map. Journal of Vibration and Control, 26(21–22), pp. 1886–1897.10.1177/1077546320911484
DOI: https://doi.org/10.2478/pead-2021-0008 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 100 - 112
Submitted on: May 14, 2021
Accepted on: Jul 1, 2021
Published on: Jul 23, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Kamila Jankowska, Pawel Ewert, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.