Have a personal or library account? Click to login
Simple Technique of Initial Speed Identification for Speed-Sensorless Predictive Controlled Induction Motor Drive Cover

Simple Technique of Initial Speed Identification for Speed-Sensorless Predictive Controlled Induction Motor Drive

Open Access
|Dec 2020

References

  1. Abu-Rub, H., Stando, D. and Kazmierkowski, M. P. (2013). Simple Speed Sensorless DTC-SVM Scheme for Induction Motor Drives. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(2), pp. 301–307. doi: 10.2478/bpasts-2013-0028.10.2478/bpasts-2013-0028
  2. Boldea, I. and Nasar, S. A. (2017). Vector Control of AC Drives, Vector Control of AC Drives. doi: 10.1201/9780203734407.10.1201/9780203734407
  3. Depenbrock, M. (1988). Direct Self-Control (DSC) of Inverter-Fed Induction Machine. IEEE Transactions on Power Electronics, 3(4), pp. 420–429. doi: 10.1109/63.17963.10.1109/63.17963
  4. Donoso, F., Mora, A., Cárdenas Dobson, J., Angulo, A., Sáez Hueichapán, D. and Rivera, M. (2018). Finite-Set Model-Predictive Control Strategies for a 3L-NPC Inverter Operating with Fixed Switching Frequency. IEEE Transactions on Industrial Electronics, 65(5). doi: 10.1109/TIE.2017.2760840.10.1109/TIE.2017.2760840
  5. Dybkowski, M. and Orlowska-Kowalska, T. (2008). Low-Speed Performance of the Stator Current-Based MRAS Estimator with FL Controller in the Sensorless Induction Motor Drive. In: 11th International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2008, pp. 75–80. doi: 10.1109/OPTIM.2008.4602460.10.1109/OPTIM.2008.4602460
  6. Gadoue, S. M., Giaouris, D. and Finch, J. W. (2009). Sensorless Control of Induction Motor Drives at Very Low and Zero Speeds Using Neural Network Flux Observers. IEEE Transactions on Industrial Electronics, 56(8), pp. 3029–3039. doi: 10.1109/TIE.2009.2024665.10.1109/TIE.2009.2024665
  7. Habibullah, M., Lu, D. D.-C., Xiao, D. and Rahman, M. F. (2017). Finite-State Predictive Torque Control of Induction Motor Supplied from a Three-Level NPC Voltage Source Inverter. IEEE Transactions on Power Electronics. doi: 10.1109/TPEL.2016.2522977.10.1109/TPEL.2016.2522977
  8. Holtz, J. (2002). Sensorless Control of Induction Motors. Proceedings of the IEEE, 90(8), pp. 1358–1394.10.1109/JPROC.2002.800726
  9. Holtz, J. (2005). Developments in sensorless AC drive technology. In: Proceedings of the International Conference on Power Electronics and Drive Systems, pp. 9–16. doi: 10.1109/peds.2005.1619652.10.1109/PEDS.2005.1619652
  10. Iura, H., Ide, K., Hanamoto, T. and Chen, Z. (2011). An Estimation Method Of Rotational Direction and Speed for Free-Running AC Machines without Speed and Voltage Sensor. IEEE Transactions on Industry Applications, 47(1), pp. 153–160. doi: 10.1109/TIA.2010.2091670.10.1109/TIA.2010.2091670
  11. Kazmierkowski, M. P. and Tunia, H. (1994). Automatic Control of Converter-Fed Drives. Amsterdam-London-New York-Tokyo, Warsaw: Elsevier Ltd.
  12. Kikuchi, T., Matsumoto, Y. and Chiba, A. (2018). Fast Initial Speed Estimation for Induction Motors in the Low-Speed Range. IEEE Transactions on Industry Applications, 54(4), pp. 3415–3425. doi: 10.1109/TIA.2018.282.5292.10.1109/TIA.2018.2825292
  13. Kobayashi, N., Kondo, K. and Yamazaki, O. (2016). Induction Motor Speed-Sensorless Vector Control Using Mechanical Simulator and Disturbance Torque Compensation. IEEE Transactions on Industry Applications, 52(3), pp. 2323–12331. doi: 10.1109/TIA.2016.2524440.10.1109/TIA.2016.2524440
  14. Kondo, K. (2015). Re-Starting Technologies for Rotational Sensorless Controlled AC Motors at the Rotating Status. In: Proceedings of 10th Asian Control Conference, pp. 1–6. doi: 10.1109/ASCC.2015.7244839.10.1109/ASCC.2015.7244839
  15. Korzonek, M. and Orlowska-Kowalska, T. (2016). Stability Analysis of MRASSCC Speed Estimator in Motoring and Regenerating Mode. Power Electronics and Drives, 1(2), pp. 113–131.
  16. Lee, K., Ahmed, S. and Lukic, S. M. (2017). Universal Restart Strategy for Scalar V/f Controlled Induction Machines. IEEE Transactions on Industry Applications, 53(6), pp. 5489–5495. doi: 10.1109/TIA.2017.2733497.10.1109/TIA.2017.2733497
  17. Maiti, S., Verma, V., Chakraborty, C. and Hori, Y. (2012). An Adaptive Speed Sensorless Induction Motor Drive with Artificial Neural Network for Stability Enhancement. IEEE Transactions on Industrial Informatics, 8(4), pp. 757–766. doi: 10.1109/TII.2012.2210229.10.1109/TII.2012.2210229
  18. Orlowska-Kowalska, T. and Dybkowski, M. (2010). Stator-current-based MRAS Estimator for A Wide Range Speed-Sensorless Induction-Motor Drive. IEEE Transactions on Industrial Electronics, 57(4), pp. 1296–1308. doi: 10.1109/TIE.2009. 2031134.10.1109/TIE.2009.2031134
  19. Orlowska-Kowalska, T. and Dybkowski, M. (2011). Performance Analysis of the Sensorless Induction Motor Drive System Under Faulted Conditions. In: 2011 IEEE EUROCON - International Conference on Computer as a Tool. IEEE, pp. 1–4. doi: 10.1109/EUROCON.2011.5929414.10.1109/EUROCON.2011.5929414
  20. Pan, H., Springob, L. and Holtz, J. (1997). Improving the Start and Restart Behavior Trough State Recognition of AC Drives. In: Proceedings of Power Conversion Conference Nagaoka, pp. 589–594. doi: 10.1109/pccon.1997.638246.10.1109/PCCON.1997.638246
  21. Schauder, C. (1992). Adaptive Speed Identification for Vector Control of Induction Motors without Rotational Transducers. IEEE Transactions on Industry Applications, 28(5), pp. 1054–1061. doi: 10.1109/28.158829.10.1109/28.158829
  22. Stando, D. (2018). Predictive Control of 3-Level Inverter-Fed Sensorless Induction Motor Drive. PhD Thesis. Warsaw: Warsaw University of Technology, Faculty of Electrical Engineering.
  23. Stando, D. and Kazmierkowski, M. P. (2020). Constant Switching Frequency Predictive Control Scheme for Three-Level Inverter-Fed Sensorless Induction Motor Drive. Bulletin of the Polish Academy of Sciences Technical Sciences, 68(5). doi: 10.24425/bpasts.2020.134668.
  24. Tajima, H., Matsumoto, Y. and Umida, H. (1996). Speed Sensorless Vector Control Method for an Industrial Drive System. IEEJ Transactions on Industry Applications, 116(11), pp. 1103–1109. doi: 10.1541/ieejias.116.1103.10.1541/ieejias.116.1103
  25. Vazquez, S., Rodriguez, J., Rivera, M., Franquelo, L. G. and Norambuena, M. (2017). Model Predictive Control for Power Converters and Drives: Advances and Trends. IEEE Transactions on Industrial Electronics, 64(2). doi: 10.1109/TIE.2016.2625238.10.1109/TIE.2016.2625238
  26. Wang, F., Chen, Z., Stolze, P., Stumper, J.-F., Rodríguez, J. and Kennel, R. (2014). Encoderless Finite-State Predictive Torque Control for Induction Machine with a Compensated MRAS. IEEE Transactions on Industrial Informatics. IEEE Computer Society, 10(2), pp. 1097–1105. doi: 10.1109/TII.2013.2287395.10.1109/TII.2013.2287395
  27. Wang, H., Sun, W., Yu, Y., Wang, G. and Xu, D. (2015). Robustness improvement for adaptive full order observer in sensorless induction motor drives. In: 9th International Conference on Power Electronics - ECCE Asia: ‘Green World with Power Electronics’, ICPE 2015-ECCE Asia. doi: 10.1109/ICPE.2015.7167961.10.1109/ICPE.2015.7167961
  28. Yang, H., Zhang, Y., Walker, P. D., Zhang, N. and Xia, B. (2017). A Method to Start Rotating Induction Motor Based on Speed Sensorless Model-Predictive Control. IEEE Transactions on Energy Conversion. IEEE, 32(1), pp. 359–368. doi: 10.1109/TEC.2016.2614670.10.1109/TEC.2016.2614670
  29. Yin, S., Xia, J., Zhao, Z., Zhao, L., Liu, W., Diao, L. and Jatskevich, J. (2020). Fast Restarting of Free-Running Induction Motors Under Speed-Sensorless Vector Control. IEEE Transactions on Industrial Electronics, 67(7), pp. 6124–6134. doi: 10.1109/TIE.2019.2934077.10.1109/TIE.2019.2934077
  30. Zhang, Y. and Yang, H. (2016). Two-Vector-Based Model Predictive Torque Control Without Weighting Factors for Induction Motor Drives. IEEE Transactions on Power Electronics, 31(2), pp. 1381–1390. doi: 10.1109/TPEL.2015.2416207.10.1109/TPEL.2015.2416207
  31. Zhang, Y., Bai, Y., Yang, H. and Zhang, B. (2019). Low Switching Frequency Model Predictive Control of Three-Level Inverter-Fed IM Drives with Speed-Sensorless and Field-Weakening Operations. IEEE Transactions on Industrial Electronics, 66(6), pp. 4262–4272. doi: 10.1109/TIE.2018.2868014.10.1109/TIE.2018.2868014
DOI: https://doi.org/10.2478/pead-2020-0014 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 189 - 198
Submitted on: Oct 7, 2020
|
Accepted on: Nov 20, 2020
|
Published on: Dec 31, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Dariusz Stando, Marian P. Kazmierkowski, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.