Have a personal or library account? Click to login
An Investigation of Direct Torque Control and Hysteresis Current Vector Control for Motion Control Synchronous Reluctance Motor Applications Cover

An Investigation of Direct Torque Control and Hysteresis Current Vector Control for Motion Control Synchronous Reluctance Motor Applications

Open Access
|Nov 2019

References

  1. Antonello, R., Carraro, M., Peretti, L. and Zigliotto, M. (2016). Hierarchical Scaled-States Direct Predictive Control of Synchronous Reluctance Motor Drives. IEEE Transactions on Industrial Electronics, 63(8), pp. 5176–5185.10.1109/TIE.2016.2536581
  2. Bianchi, N., Bolognani, S., Carraro, E., Castiello, M. and Fornasiero, E. (2016). Electric Vehicle Traction Based on Synchronous Reluctance Motors. IEEE Transactions on Industry Applications, 52(6), pp. 4762–4769.10.1109/TIA.2016.2599850
  3. Buja, G. S. and Kazmierkowski, M. P. (2004). Direct Torque Control of PWM Inverter-Fed AC Motors — A Survey. IEEE Transactions on Industrial Electronics, 51(4), pp. 744–757.10.1109/TIE.2004.831717
  4. Grabowski, P. Z., Kazmierkowski, M. P., Bose, B. K. and Blaabjerg, F. (2000). A Simple Direct-Torque Neuro-Fuzzy Control of PWM-Inverter-Fed Induction Motor Drive. IEEE Transactions on Industrial Electronics, 47(4), pp. 863–870.10.1109/41.857966
  5. Guagnano, A., Rizzello, G., Cupertino, F. and Naso, D. (2016). Robust Control of High-Speed Synchronous Reluctance Machines. IEEE Transactions on Industry Applications, 52(5), pp. 3990–4000.10.1109/TIA.2016.2574774
  6. Hadla, S. C. H. (2016). Active flux based finite control set model predictive control of synchronous reluctance motor drives. In: 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe (Germany), pp. 1–10.10.1109/EPE.2016.7695377
  7. Hinkkanen, M., Asad, A. A. H., Qu, Z., Tuovinen, T. and Briz, F. (2016). Current Control for Synchronous Motor Drives: Direct Discrete-Time Pole-Placement Design. IEEE Transactions on Industry Applications, 52(2), pp. 1530–1541.
  8. Juhasz, G., Halasz, S. and Veszpremi, K. (2000). New aspects of a direct torque controlled induction motor drive. In: Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482), Goa (India), pp. 43–48.10.1109/ICIT.2000.854094
  9. Ma, X., Li, G., Zhu, Z., Jewell, G. W. and Green, J. (2018). Investigation on Synchronous Reluctance Machines with Different Rotor Topologies and Winding Configurations. IET Electric Power Applications, 12(1), pp. 45–53.10.1049/iet-epa.2017.0199
  10. Malinowski, M., Kazmierkowski, M. P., Hansen, S., Blaabjerg, F. and Marques, G. D. (2001). Virtual-Flux-Based Direct Power Control of Three-Phase PWM Rectifiers. IEEE Transactions on Industry Applications, 37(4), pp. 1019–1027.10.1109/28.936392
  11. Malinowski, M., Kazmierkowski, M. P. and Trzynadlowski, A. M. (2003). A Comparative Study of Control Techniques for PWM Rectifiers in AC Adjustable Speed Drives. IEEE Transactions on Power Electronics, 18(6), pp. 1390–1396.10.1109/TPEL.2003.818871
  12. Mishra, T., Devanshu, A., Kumar, N. and Kulkarni, A. R. (2016). Comparative analysis of Hysteresis Current Control and SVPWM on Fuzzy Logic based vector controlled Induction Motor Drive. In: 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi (India), pp. 1–6.10.1109/ICPEICES.2016.7853632
  13. Nardo, M. D., Calzo, G. L., Galea, M. and Gerada, C. (2018). Design Optimization of a High-Speed Synchronous Reluctance Machine. IEEE Transactions on Industry Applications, 54(1), pp. 233–243.10.1109/TIA.2017.2758759
  14. Orłowska-Kowalska, T. and Dybkowski, M. (2016). Industrial Drive Systems. Current State and Development Trends. Power Electronics and Drives, 36(1), pp. 5–25.
  15. Purohit, P. and Dubey, M. (2014). Analysis and design of hysteresis current controlled multilevel inverter fed PMSM drive. In: 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, Bhopal, pp. 1–5.10.1109/SCEECS.2014.6804532
  16. Schmidt, I. and Veszpremi, K. (2005). Application of direct controls to variable-speed wind generators. In: 2005 International Conference on Industrial Electronics and Control Applications, Quito (Ecuador), pp. 1–6.10.1109/ICIECA.2005.1644340
  17. Staudt, S., Stock, A., Kowalski, T., Teigelkötter, J. and Lang, K. (2015). Raw data based model and high dynamic control concept for traction drives powered by synchronous reluctance machines. In: 2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Torino (Italy), pp. 204–209.10.1109/WEMDCD.2015.7194530
  18. Schmidt, I., Vincze, K., Veszpremi, K. and Seller, B. (2001). Adaptive Hyste-resis Current Vector Control of Synchronous Servo Drives With Different Tolerance Areas. Periodica Polytechnica Electrical Engineering, 45(3–4), pp. 211–222.
  19. Vajsz, T., Számel, L. and Rácz, G. (2017). A Novel Modified DTC-SVM Method with Better Overload-Capability for Permanent Magnet Synchronous Motor Servo Drives. Periodica Polytechnica Electrical Engineering and Computer Science, 61(3), pp. 253–263.10.3311/PPee.10428
  20. Veszpremi, K. and Schmidt, I. (2008). Direct controls in voltage-source converters — Generalizations and deep study. In: 2008 13th International Power Electronics and Motion Control Conference, Poznan (Poland), pp. 1803–1810.10.1109/EPEPEMC.2008.4635527
  21. Zhang, X. and Foo, G. H. B. (2016). A Robust Field-Weakening Algorithm Based on Duty Ratio Regulation for Direct Torque Controlled Synchronous Reluctance Motor. IEEE/ASME Transactions on Mechatronics, 21(2), pp. 765–773.10.1109/TMECH.2015.2469096
  22. Zhang, X., Foo, G. H. B., Vilathgamuwa, D. M. and Maskell, D. L. (2015). An Improved Robust Field-Weakening Algorithm for Direct-Torque-Controlled Synchronous-Reluctance-Motor Drives. IEEE Transactions on Industrial Electronics, 62(5), pp. 3255–3264.10.1109/TIE.2014.2386798
DOI: https://doi.org/10.2478/pead-2019-0009 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 115 - 124
Submitted on: Dec 20, 2018
|
Accepted on: Apr 1, 2019
|
Published on: Nov 26, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Tibor Vajsz, László Számel, Árpád Handler, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.