Have a personal or library account? Click to login
Application of Neural Networks and Axial Flux for the Detection of Stator and Rotor Faults of an Induction Motor Cover

Application of Neural Networks and Axial Flux for the Detection of Stator and Rotor Faults of an Induction Motor

By: Paweł Ewert  
Open Access
|Nov 2019

References

  1. Bacha, K., Henao, H., Gossa, M. and Capolino, G.-A. (2008). Induction Machine Fault Detection Using Stray Flux EMF Measurement and Neural Network-Based Decision. Electric Power Systems Research, 78(7), pp. 1247–1255.10.1016/j.epsr.2007.10.006
  2. Ceban, A., Pusca, R. and Romary, R. (2012). Study of Rotor Faults in Induction Motors Using External Magnetic Field Analysis. IEEE Transactions on Industrial Electronics, 59(5), pp. 2082–2093.10.1109/TIE.2011.2163285
  3. Ewert, P. (2017). Use of axial flux in the detection of electrical faults in induction motors. In: 2017 International Symposium on Electrical Machines (SME), IEEE, Naleczow, Poland, 18–21 June 2017, pp. 1–6.10.1109/ISEM.2017.7993571
  4. Henao, H., Capolino, G.-A., Fernandez-Cabanas, M., Filippetti, F., Bruzzese, C., Strangas, E. and Hedayati-Kia, S. (2014). Trends in Fault Diagnosis for Electrical Machines: A Review of Diagnostic Techniques. IEEE Industrial Electronics Magazine, 8(2), pp. 31–42.10.1109/MIE.2013.2287651
  5. Jung, J. H., Lee, J.-J. and Kwon, B.-H. (2006). Online Diagnosis of Induction Motors Using MCSA. IEEE Transactions on Industrial Electronics, 53(6), pp. 1842–1852.10.1109/TIE.2006.885131
  6. Kowalski, C. T. and Orlowska-Kowalska, T. (2003). Neural Networks Application for Induction Motor Faults Diagnosis. Mathematics and Computers in Simulation, 63(3–5), pp. 435–448.10.1016/S0378-4754(03)00087-9
  7. Meshgin-Kelk, H., Milimonfared, J. and Toliyat, H. A. (2004). Interbar Currents and Axial Fluxes in Healthy and Faulty Induction Motors. IEEE Transactions on Industry Applications, 40(1), pp. 128–134.10.1109/TIA.2003.821792
  8. Morsalin, S., Mahmud, K., Mohiuddin, H., Halim, M. R. and Saha, P. (2014). Induction motor inter-turn fault detection using heuristic noninvasive approach by artificial neural network with Levenberg Marquardt algorithm. In: 2014 International Conference on Informatics, Electronics & Vision (ICIEV). Dhaka, Bangladesh, 23–24 May 2014, pp. 1–6. Available at: https://ieeexplore.ieee.org/document/7136002.10.1109/ICIEV.2014.7136002
  9. Orłowska-Kowalska, T. and Dybkowski, M. (2016). Industrial Drive Systems. Current State and Development Trends. Power Electronics and Drives, 1(36)(1), pp. 5–25.
  10. Penman, J., Sedding, H. G., Lloyd, B. A. and Fink, W. T. (1994). Detection and Location of Interturn Short Circuits in the Stator Windings of Operating Motors. IEEE Transactions on Energy Conversion, 9(4), pp. 652–658.10.1109/60.368345
  11. Pietrowski, W. (2011). Application of Radial Basis Neural Network to Diagnostics of Induction Motor Stator Faults Using Axial Flux. Przegląd Elektrotechniczny (Electrical Review), R. 87 NR 6/2011, pp. 190–192.
  12. Rama Krishna, M. S. and Kishan, S. H. (2013). Neural network for the diagnosis of rotor broken faults of induction motors using MCSA. In: 7th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India, 4–5 January 2013, pp. 133–137. Available at: https://ieeexplore.ieee.org/document/6481136.10.1109/ISCO.2013.6481136
  13. Romary, R., Pusca, R., Lecointe, J. P. and Brudny, J. F. (2013). Electrical machines fault diagnosis by stray flux analysis. In: 2013 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Paris, France, 11–12 March 2013, pp. 247–256. Available at: https://ieeexplore.ieee.org/document/6525184.10.1109/WEMDCD.2013.6525184
  14. Toni, K., Slobodan, M. and Aleksandar, B. (2007). Detection of turn to turn faults in stator winding with axial magnetic flux in induction motors. In: IEEE International Conference on Electric Machines and Drives, Antalya, Turkey, 3–5 May 2007, pp. 826–829. Available at: https://ieeexplore.ieee.org/document/4270748.10.1109/IEMDC.2007.382775
  15. Tulicki, J., Petryna, J. and Sułowicz, M. (2016). Fault Diagnosis of Induction Motors in Selected Working Conditions Based on Axial Flux Signals. Technical Transactions, 13(Electrical Engineering, 3–E), pp. 99–113.
  16. Vas, P. (1993). Parameter Estimation, Condition Monitoring, and Diagnosis of Electrical Machines. Oxford: Oxford University Press.10.1093/oso/9780198593751.001.0001
  17. Vas, P. (1999). Artificial Intelligence-Based Electrical Machines and Drives: Applications of Fuzzy, Neural, Fuzzy-Neural and Genetic Algorithm Based Techniques. Oxford: Oxford University Press.10.1093/oso/9780198593973.001.0001
  18. Wolkiewicz, M. and Kowalski, C. T. (2016). Incipient stator fault detector based on neural networks and symmetrical components analysis for induction motor drives. In: 2016 13th Selected Issues of Electrical Engineering and Electronics (WZEE), IEEE, Rzeszow, Poland, 4–8 May 2016, pp. 1–7.10.1109/WZEE.2016.7800214
  19. Wolkiewicz, M. and Skowron, M. (2017). Diagnostic system for induction motor stator winding faults based on axial flux. Power Electronics and Drives, 2(37)(2), pp. 137–150.
  20. Wolkiewicz, M., Tarchała, G. and Kowalski, C. T. (2015). Stator Windings Condition Diagnosis of Voltage Inverter-Fed Induction Motor in Open and Closed-Loop Control Structures. Archives of Electrical Engineering, 64(1), pp. 67–79.10.1515/aee-2015-0007
DOI: https://doi.org/10.2478/pead-2019-0001 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 203 - 215
Submitted on: Jul 31, 2018
Accepted on: Sep 25, 2018
Published on: Nov 26, 2019
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Paweł Ewert, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.